Autonomous Driving Towards Reducing Human Efforts in Visual Perception and Beyond

Dr. Kaicheng Yu, PI of Autonomous Intelligence Lab, Westlake University

0

Large Al Model Changes The World

ChatGPT is the **fastest app** reaches 1M Users Only has **1** feature, Chat with GPT

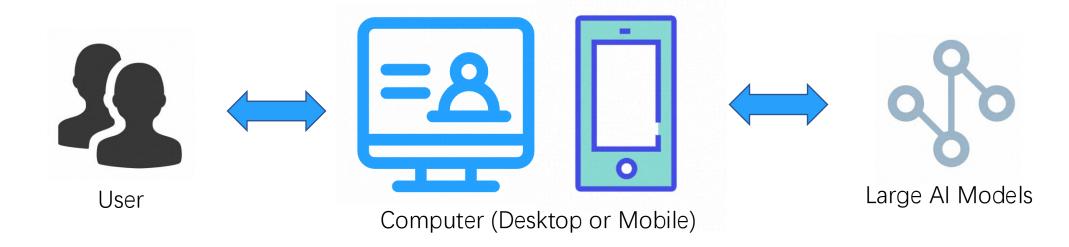
Google Trends of ChatGPT

L. Statistica.com, https://www.statista.com/statistics/1366930/chatgpt-google-search-weekly-worldwide/, accessed on May 26th

^{2.} Twitter Watcher.Guru, https://watcher.guru/news/how-long-did-it-take-chatgpt-to-reach-1-million-users, accessed on May 31th

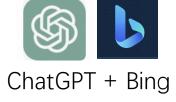
0

Large Al Model Will Change The World Virtually



Closed Sourced

Alibaba - Tongyi

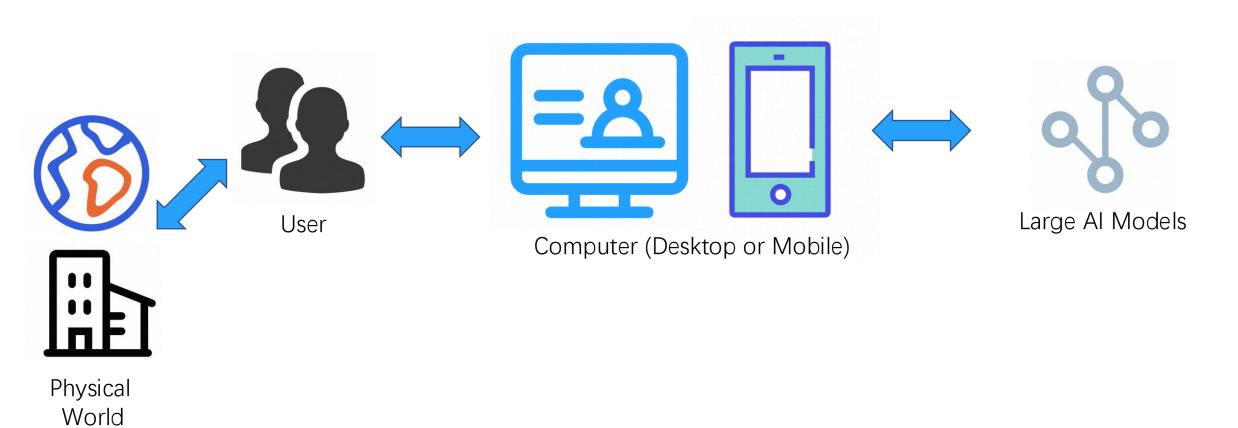


Open Sourced

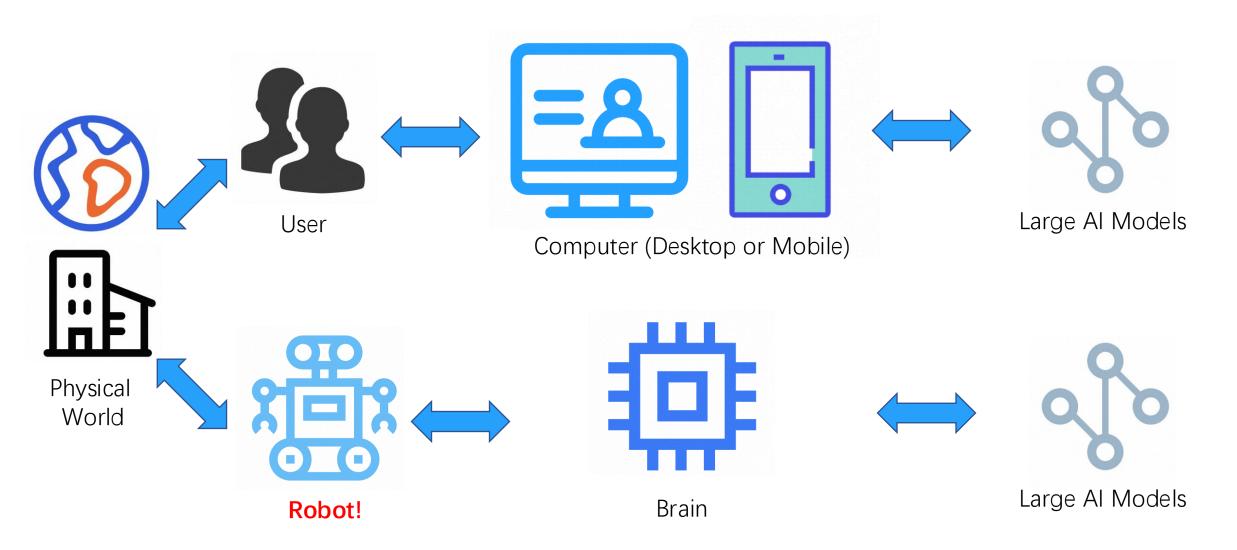
Generative Agents

AutoGPT

O How does Al Model interact with physical world?



O How does Al Model interact with physical world?



Autonomous Driving Vehicle Is Also A Robot

Autonomous Driving Understand and Act in 3D World

Bus

Heavy Truck

Taxi

Carrier

Large-scale deployment of AV across China

Carrier

Largest Autonomous Driving in logistic

200 + Cities

800+ AutoVehicle

50M+ orders

Truck

Research -> Product

50+ routes across China

30+ test vehicles

100M+km test milage

Heavy Truck Preliminary Exploration

Built 20+ Auto-Truck

Cainiao, Shentong

Release in 2027

7

PART I: General introduction of Autonomous Driving System (ADS)

Automotive ADAS Systems

Overall Automotive ADAS System

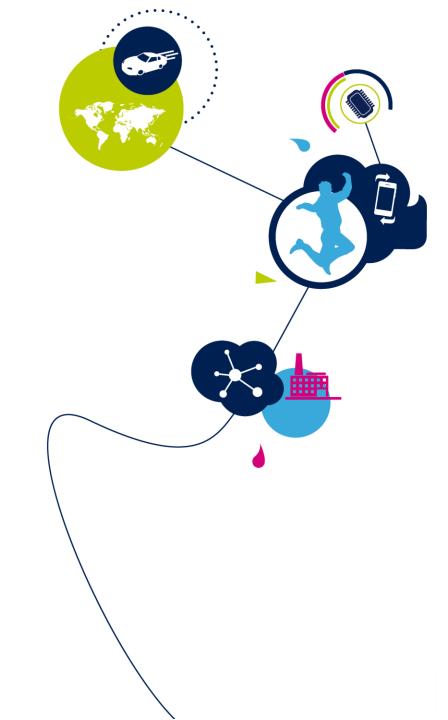
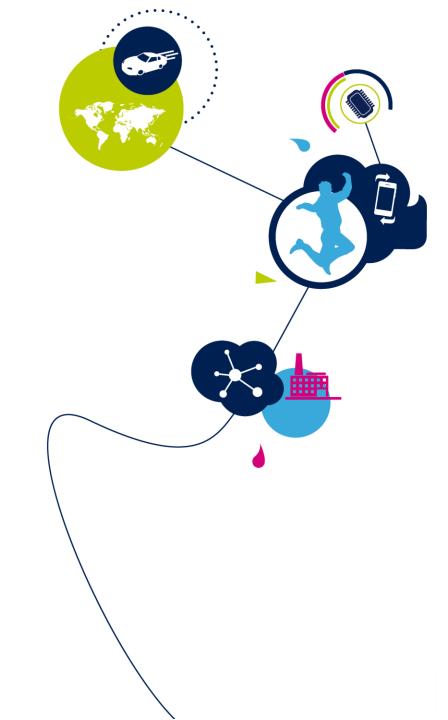


Table of Contents

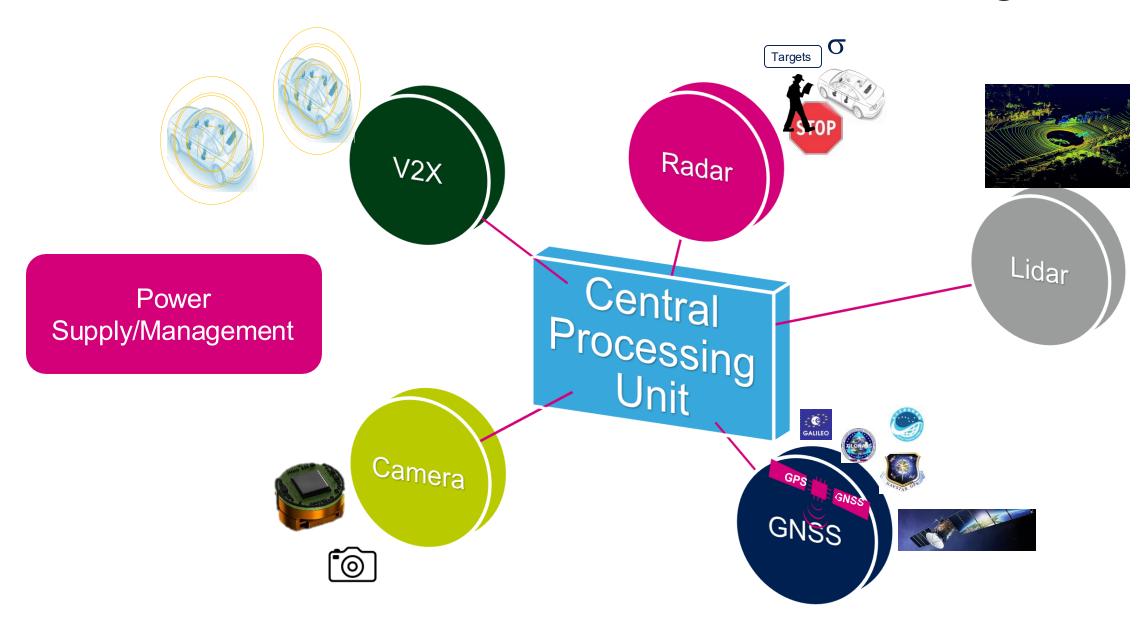
- ADAS overview
- ADAS Vehicle Architectures
- ADAS Technologies/Sensors
 - Vision(Cameras) System
 - LiDAR System
 - Radar System
 - GNSS/IMU System
 - V2X System
- Sensor Fusion Example

Automotive ADAS Systems

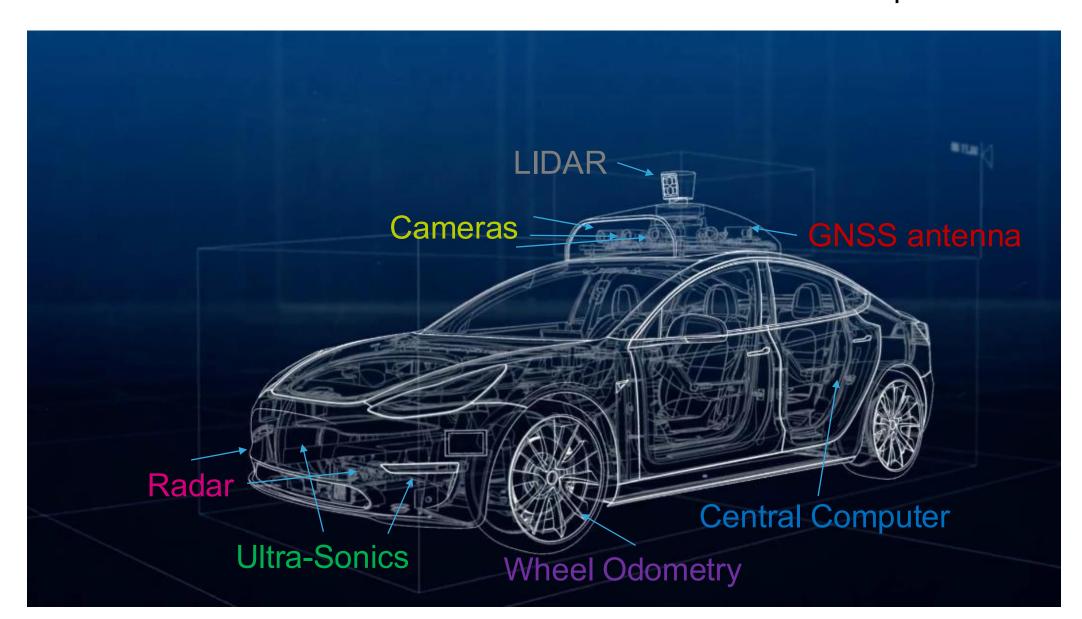
ADAS Overview



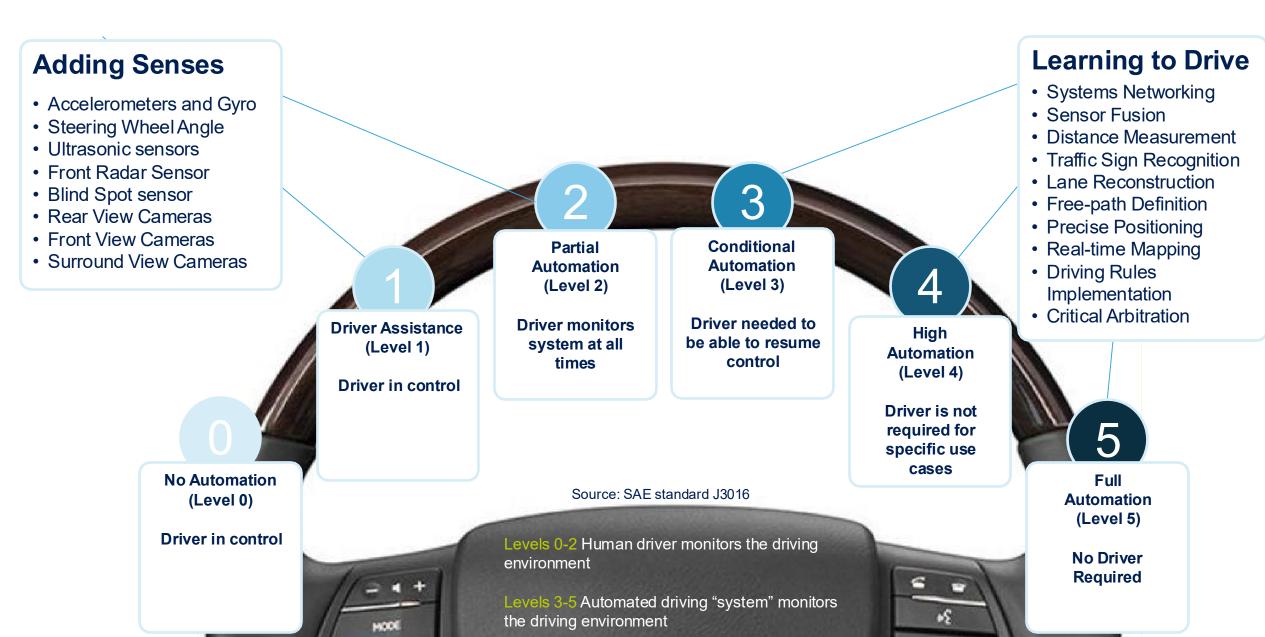
Overview of ADAS Technologies



ADAS Sensors - Needed for Perception



The 5 Levels of Vehicle Automation



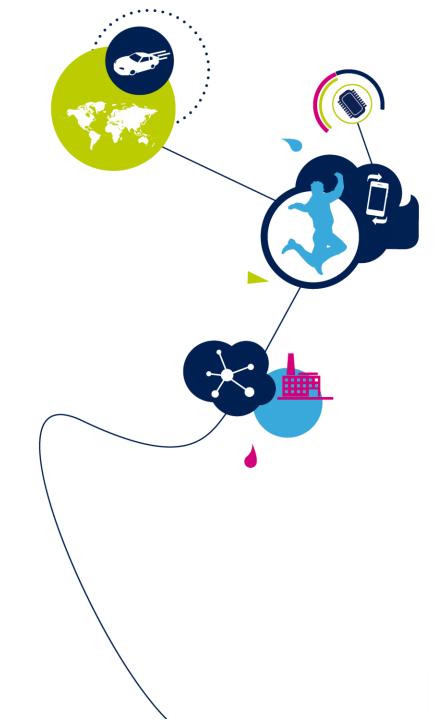
Sensor Fusion is Key to Autonomous

No sensor type works well for all tasks and in all conditions, so sensor fusion will be necessary to provide redundancy for autonomous functions

				1	LiDAR+Radar+
	Camera	Radar	Lidar	Ultrasonic	Camera
Object detection					
Object classification					
Distance estimation	0				
Object edge precision					
Lane tracking					
Range of visibility					
Functionality in bad weather					
Functionality in poor lighting					

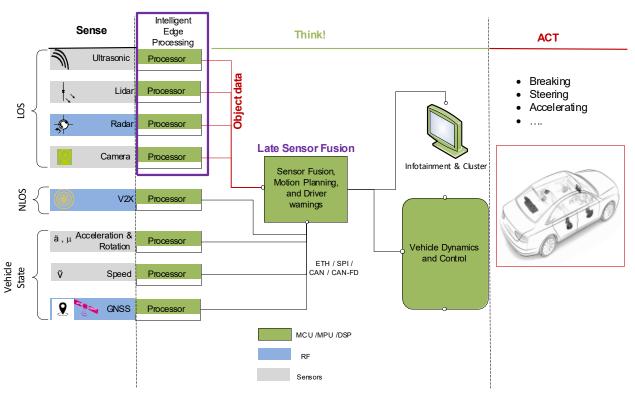
Automotive ADAS Systems

ADAS Vehicle Architectures

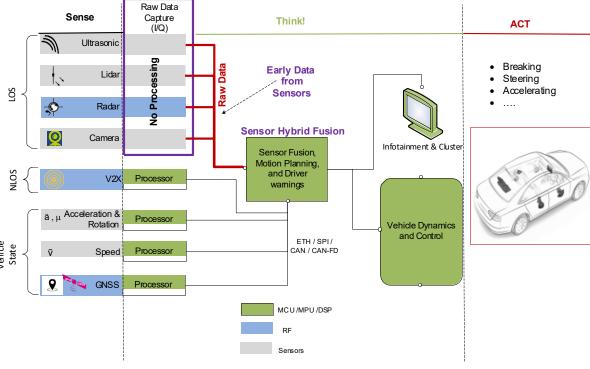


Distributed vs Centralized Processing

Distributed Processing with Object Level Fusion



Centralized Processing with Raw Data Fusion

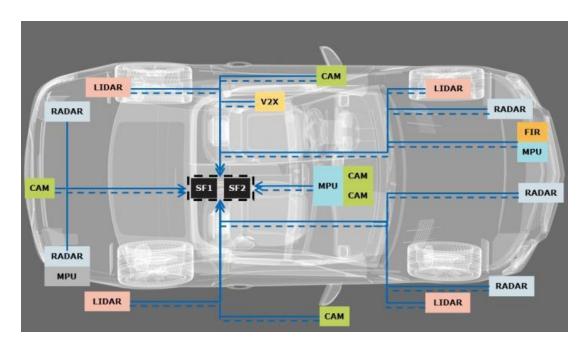


LOS: Line-of-Sight **NLOS**: Non-Line-of-Sight

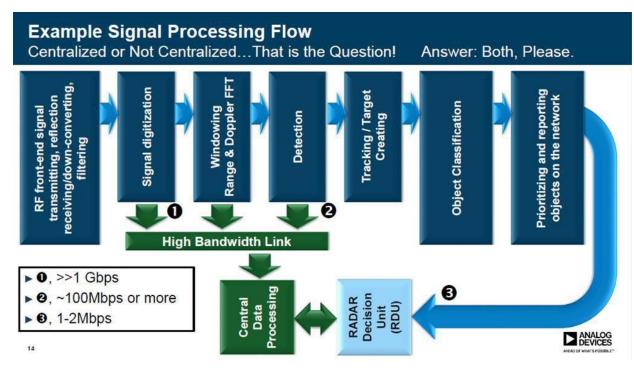
- Distributed Interfaces
 - ETH, SPI, I2C, CAN, CAN-FD
 - RADAR, Ultrasonic, V2X, IMU, Wheel Odomerty, GNSS
 - MIPI(CSI-2), GMSL(Maxim), FPD-Link(TI), PCIe, HDBaseT(Valens)
 - Video Cameras?
 - Lidar?

- Centralized Interfaces
 - ETH, SPI, I2C, CAN, CAN-FD
 - V2X, IMU, Wheel Odomerty, GNSS
 - MIPI(CSI-2), GMSL(Maxim), FPD-Link(TI), PCIe, HDBaseT(Valens)
 - Radar, Ultrasonic
 - Cameras
 - Lidar?

Distributed vs Centralized Processing



Source: 2018 IHS Markit – "Autonomous Driving-The Changes to come"

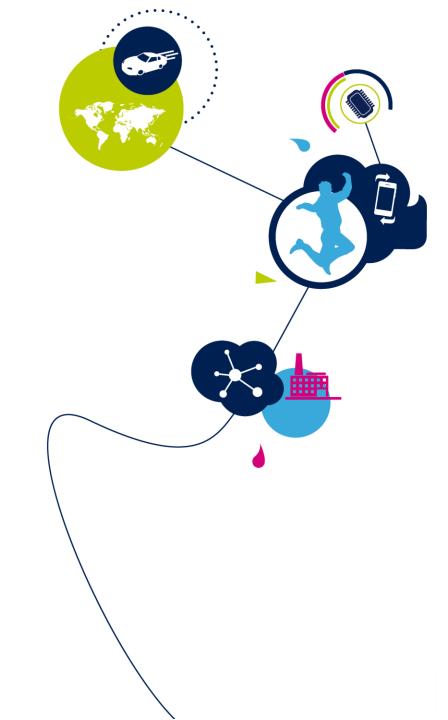


Source: ADI

- What are the Data rates requirements for each sensor?
 - Centralized (i.e. SERDES?) vs Distributed (i.e. ETH?)
- Example: 4-5 Corner Radars are utilized in high end/premium vehicles.

Automotive ADAS Systems

Vision (Cameras) System

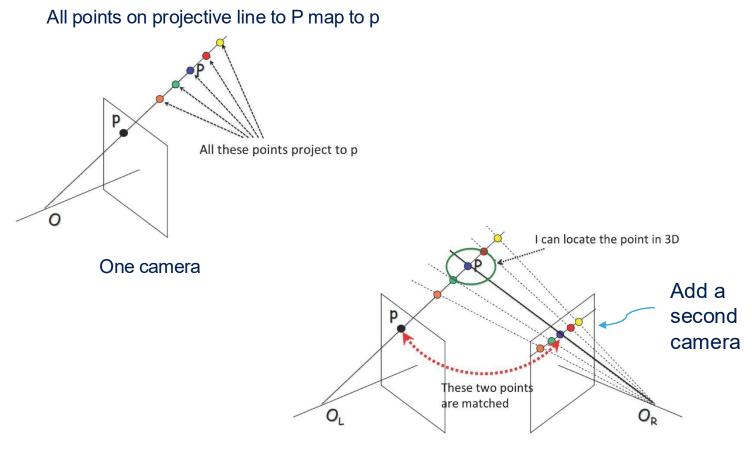


Camera

- Essential for correctly perceiving environment
- Richest source of raw data about the scene only sensor that can reflect the true complexity of the scene.

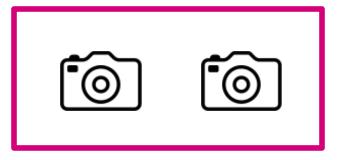
- The lowest cost sensor as of today
- Comparison metrics:
 - Resolution
 - Field of view (FOV)
 - Dynamic range
- Trade-off between resolution and FOV?

Enables depth estimation from image data



Find a point in 3D by triangulation!

Camera-Stereo

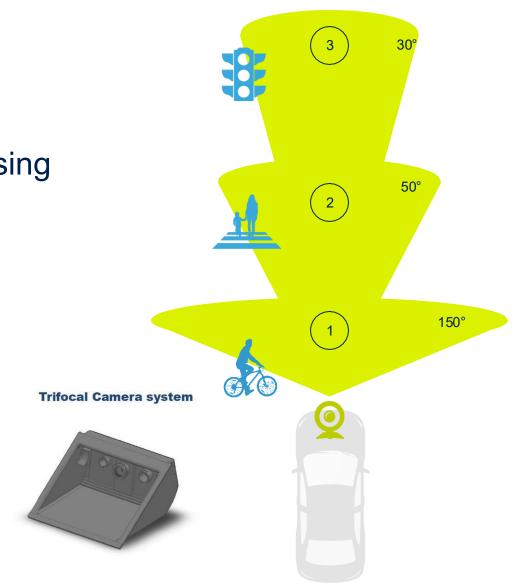


Left and right images

Source: Sanja Fidler, CSC420: Intro to Image Understanding

The Next Phase for Vision Technology

- From sensing to comprehensive perception
- Machine learning used already for object sensing
- Autonomous driving needs
 - Path planning based on holistic cues
 - Dynamic following of the drivable area
- Deep learning is now being applied



Machine Vision: ST & Mobileye

EyeQ3[™] 3rd Generation vision processor

- Detection of driving lanes
- Recognition of traffic signs
- Detection of pedestrians and cyclists
- Seeing obstacles how the human eye sees them
- Adapting cruise speed
- Emergency braking when car ahead slows suddenly

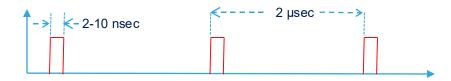
EyeQ4[™] 4th Generation enables

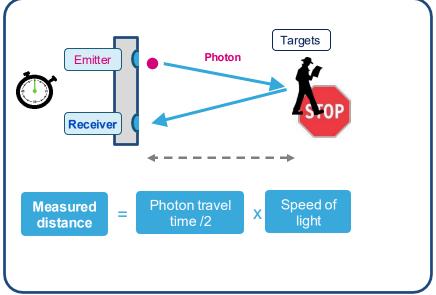
- Detection of more objects, more precisely
- More features required for automated driving Free-space Estimation, Road Profile Reconstruction
- Monitoring of environmental elements (fog, ice, rain) and their safety impact
- Detailed understanding of the road conditions allowing automatic suspension and steering adjustment
- Highly automated vehicles

The Road to Full Autonomous Driving: Mobileye and ST to Develop EyeQ®5 SoC targeting Sensor Fusion Central Computer for Autonomous Vehicles

LiDAR Technology Overview

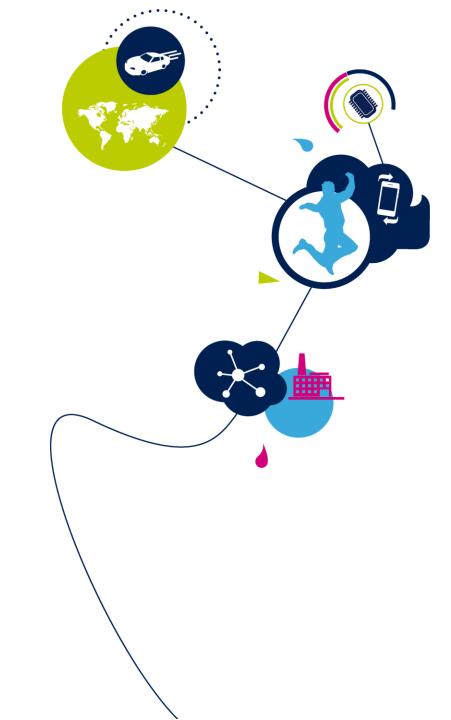
- LiDAR (light detecting and ranging, or "light radar") sensors send one or more laser beams at a high frequency and use the Time-of-Flight principle to measure distances. LiDAR capture a highresolution point cloud of the environment.
- Can be used for object detection, as well as mapping an environment
 - Detailed 3D scene geometry from LIDAR point cloud
- LiDAR uses the same principal as ToF sensor, but at much longer distances, minimum 75M for "near field" and 150-200M for "far field".





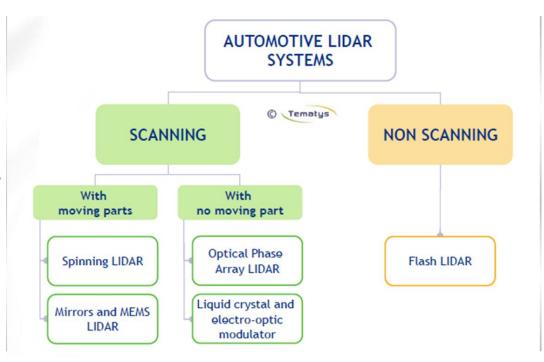
Automotive ADAS Systems

LiDAR System



LiDAR Techniques

- There are multiple techniques currently under evaluation for LiDAR including rotating assembly, rotating mirrors, Flash (single Tx source, array Rx), scanning MEMS micro-mirrors, optical phased array.
- From a transmitter/receiver (Tx/Rx) perspective the following technologies need to be developed or industrialized for automotive.
 - MEMS Scanning Micro-mirror technologies
 - SPAD (Single Photon Avalanche Detectors) Rx
 - 3D SPAD Rx
 - Smart GaN (Gallium nitride)
- Comparison metrics:
 - Number of beams: 8,16, 32, and 64 being common sizes
 - Points per second: The faster, the more detailed the 3D point cloud can be
 - · Rotation rate: higher rate, the faster the 3D point clouds are updated
 - Detection Range: dictated by the power output of the light source
 - Field of view: angular extent visible to the LIDAR sensor



Source: J. Cochard et.al., "LiDAR Technologies for the Automotive Industry", Tematsys, June 2018

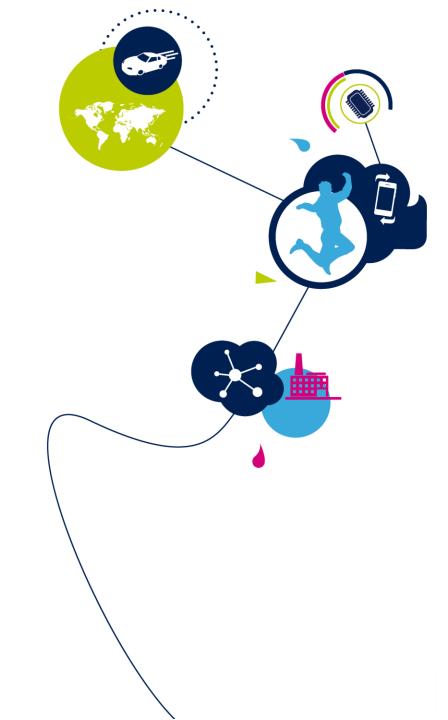
Upcoming: Solid state LIDAR!

LiDAR Summary

- Autonomous vehicles have been around for quite some time but only now the technologies are available for practical implementations
- No single sensor solution exists to cover all aspects range, accuracy, environmental conditions, color discrimination, latency etc.
 - Multi-sensor fusion and integration will be a must
 - Each technology attempts to solve the overall problem while having multiple limitations
- Many LiDAR solutions (technologies) are available or being proposed with no clear winners
- Market is still in very early stage of development and experimentation
- When and which technology or system will be widely adopted and mass production starts is still unknown

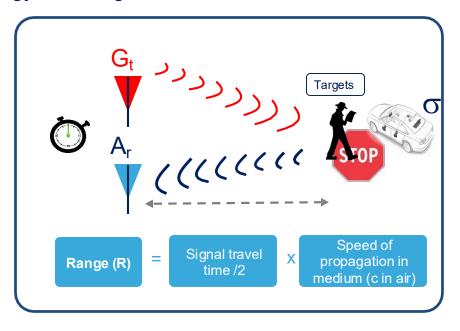
Automotive ADAS Systems

Radar Systems

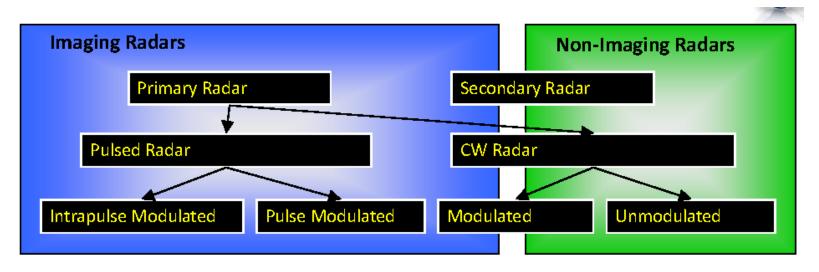


RADAR Technology Overview

- RADAR (RAdio Detection and Ranging) is one necessary sensor for ADAS (Advanced Driver Assistance System) systems for the detection and location of objects in the presence of interference; i.e., noise, clutter, and jamming.
- Robust Object Detection and Relative Speed Estimation
- Transmit a radio signal toward a target, Receive the reflected signal energy from target
- The radio signal can the form of "Pulsed" or "Continuous Wave"
- Works in poor visibility like fog and precipitation!
- Automotive radars utilize Linear FM signal, Frequency Modulated Continuous Wave (FMCW)
 - FM results in a shift between the TX and RX signals that allows for the determination of time delay, Range and velocity.



RADAR Techniques



- Definitions:
 - Imaging Radar: Forms a picture of the object or area
 - Non-Imaging Radar: Measures scattering properties of the object or area
 - Primary Radar: Transmits signals that are reflected and received
 - Secondary Radar: Transponder that responds to interrogation with additional info
 - Pulsed Radar: High power signals are only present for a short duration and repeated at specific intervals
 - CW Radar: Signal is present continuously

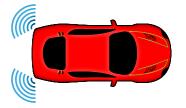
2013 Defence & Security Forum, EuMW

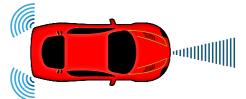
- Comparison metrics:
 - Range
 - Field of view
 - Position and speed accuracy
- Configurations:
 - Wide-FOV: Short Range
 - Narrow-FOV: Long Range

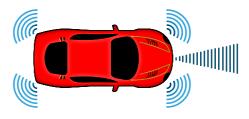
Automotive Radar Vs. Automation Levels

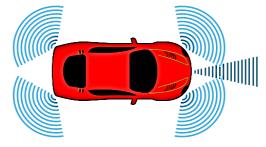
< 2014 Level 1 Driver Assistance 2016 Level 2 Partial Automation 2018
Level 3
Conditional Automation

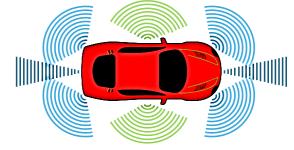
2019 / 2020 Level 4 High Automation > 2028 Level 5 Full Automation











Object detection

2x SRR

Applications

BSD, LCA

n Object detection

2x SRR 1x LRR

Applications
BSD, RCW, LCA

ACC, AEB

High resolution target separation

4x SRR 1x LRR

Applications
BSD, RCW, LCA
FCW, RCTA
ACC, AEB

3D detection

4x SRR-MRR 1x LRR

Applications
BSD, LCA, RCTA
AEB pedestrian
ACC, AEB

360° object recognition

2x USRR 4x SRR-MRR 2x LRR

Applications

AVP, PA

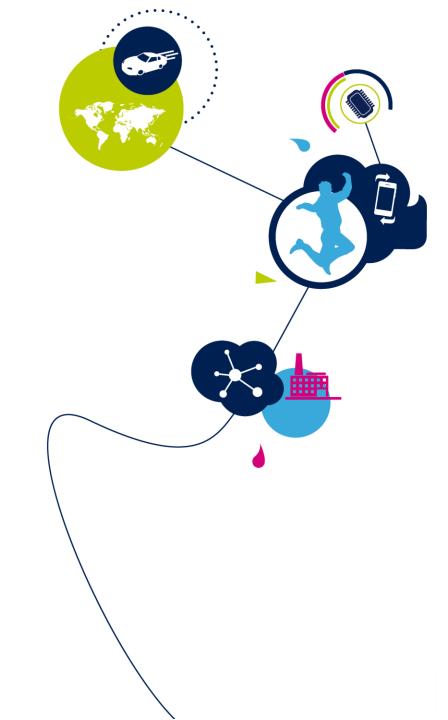
BSD, LCA, RCTA

AEB pedestrian ACC, AEB

USRR - Ultra Short Range Radar SRR - Short Range Radar MRR - Medium Range Radar LRR - Long Range Radar BSD - Blind Sport Detection LCA - Lane Change Assist RCW - Rear Collision Warning ACC - Adaptive Cruise Control AEB - Automatic Emergency Breaking FCW - Forward Collision Warning RCTA - Rear Cross Traffic Alert AVP - Automated Valet Parking PA - Parking Assist

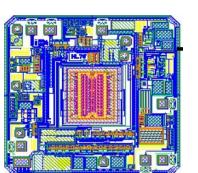
Automotive ADAS Systems

GNSS/IMU System



GNSS/IMU Positioning

- Global Navigation Satellite Systems and Inertial Measurement Units
- Direct measure of vehicle states
 - Positioning, velocity, and time (GNSS)
 - Varying accuracies: Real-time Kinematic (RTKshort base line), Precise Point Positioning (PPP), Differential Global Positioning System (DGPS), Satellite-based augmentation system (SBASlonospheric delay correction)
 - Angular rotation rate (IMU)
 - Acceleration (IMU)
 - Heading (IMU, GPS)

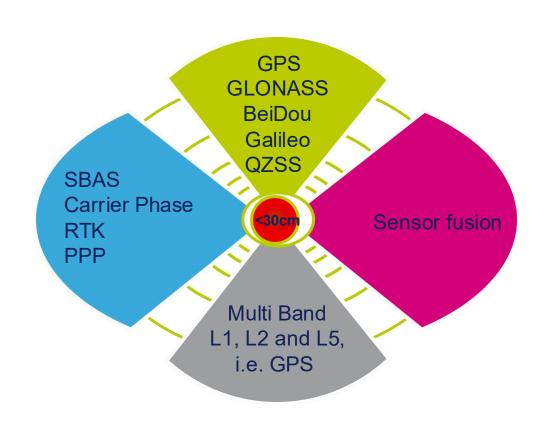


GNSS/IMU Positioning More Precision Enables More Safety Features

Precise Positioning: Towards Autonomous Driving

Precise Positioning to enable < 30cm precision

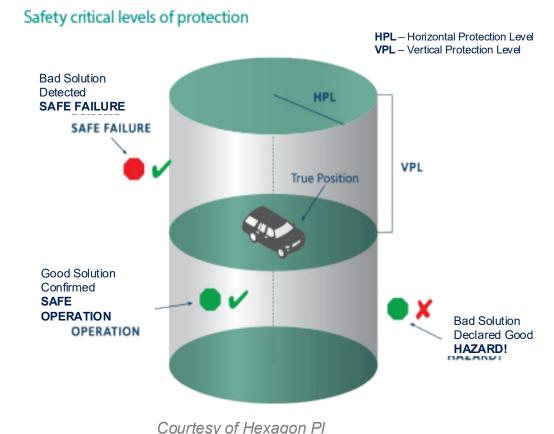
- Lane detection
- Positioning data for V2X sharing
- Collision avoidance
- Autonomous parking
- Autonomous driving
- eCall accident location



Precise GNSS is a Critical ADAS Sensor

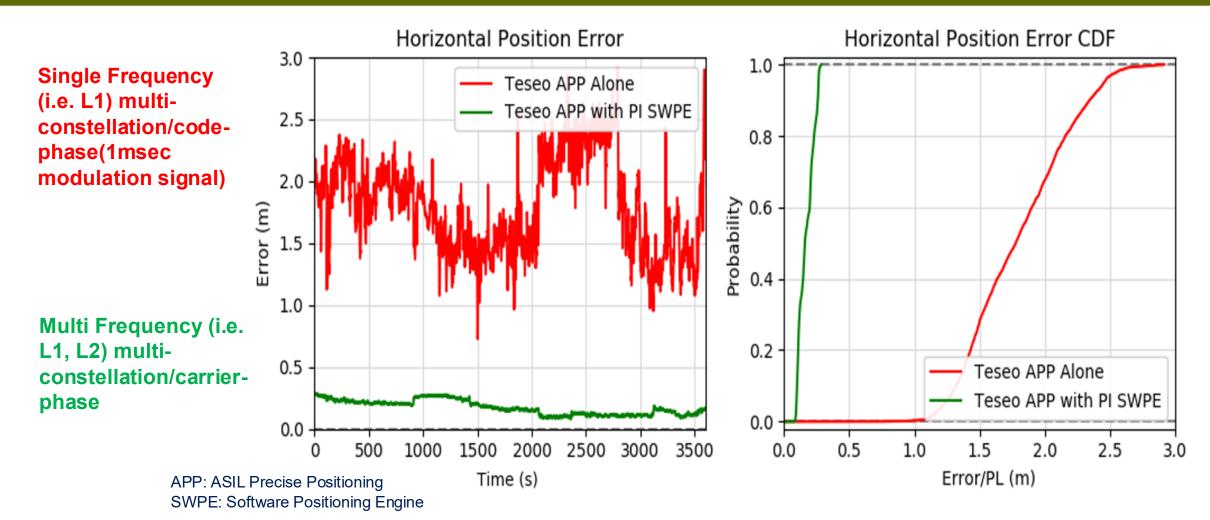
Higher integrity requirements across safety-critical applications

- Semi- and Autonomous driving safety-related applications requirements increase
 - Higher safety levels
 - Added redundancy
 - More Robustness & integrity
 - Security
- Teseo APP (ASIL Precise Positioning) GNSS receiver, new sensor based on ISO26262 concept with unique Absolute and Safe positioning information complementing relative positioning other sensor inputs(i.e. LIDAR, RADAR, etc.)



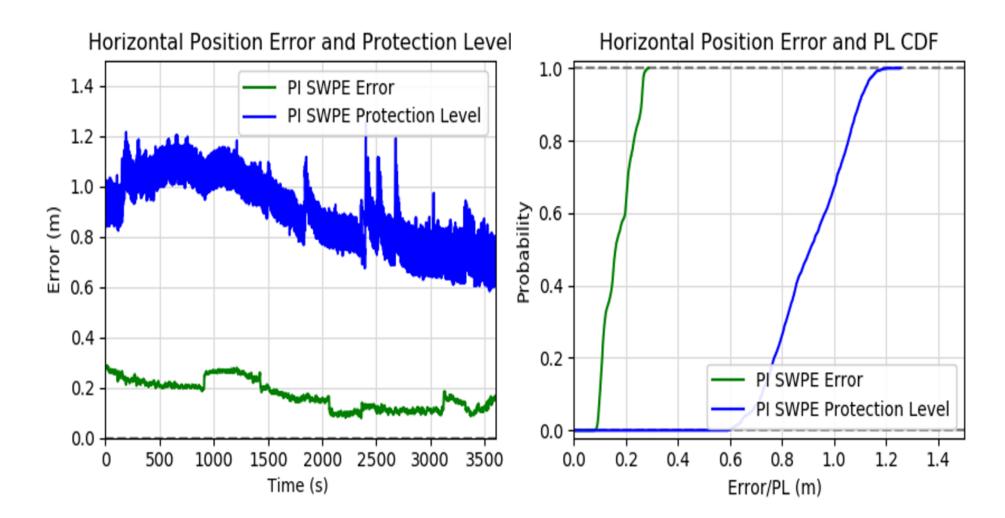
Precise GNSS is a Critical ADAS Sensor

GNSS Accuracy in Automotive Environment (using PPP – Precise Point Positioning)



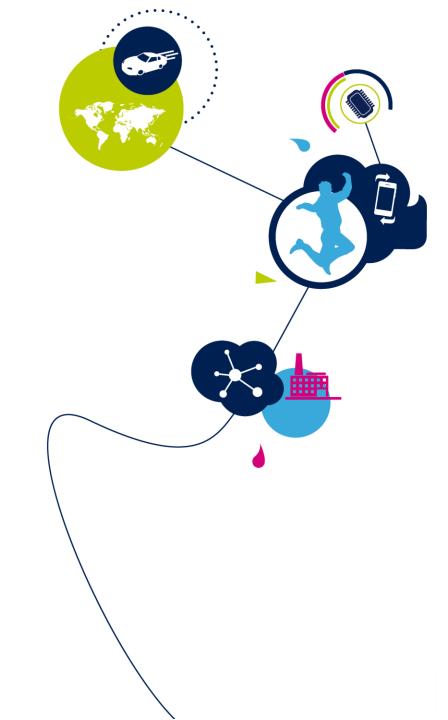
Precise GNSS is a Critical ADAS Sensor

GNSS Integrity – Protection Levels

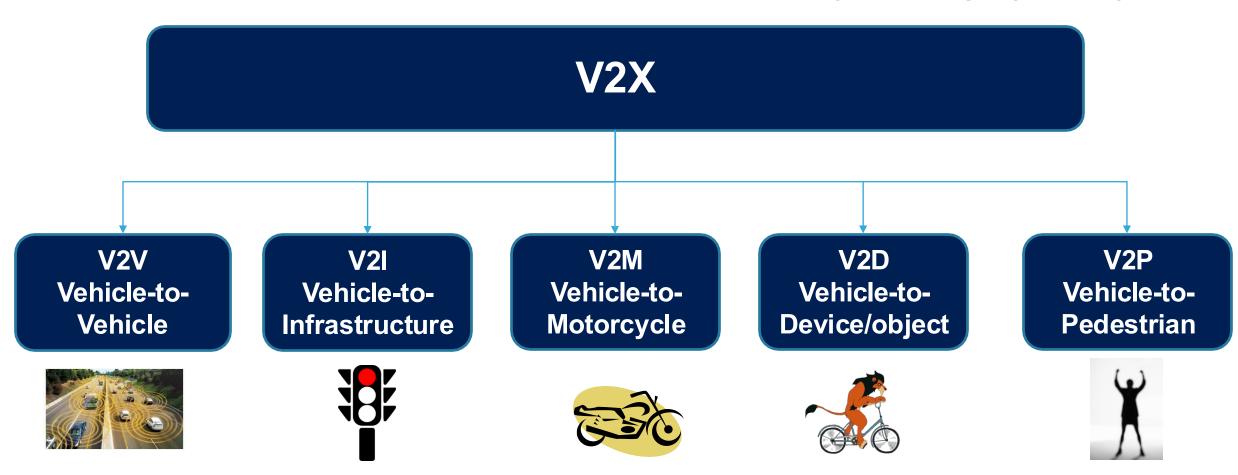


Automotive ADAS Systems

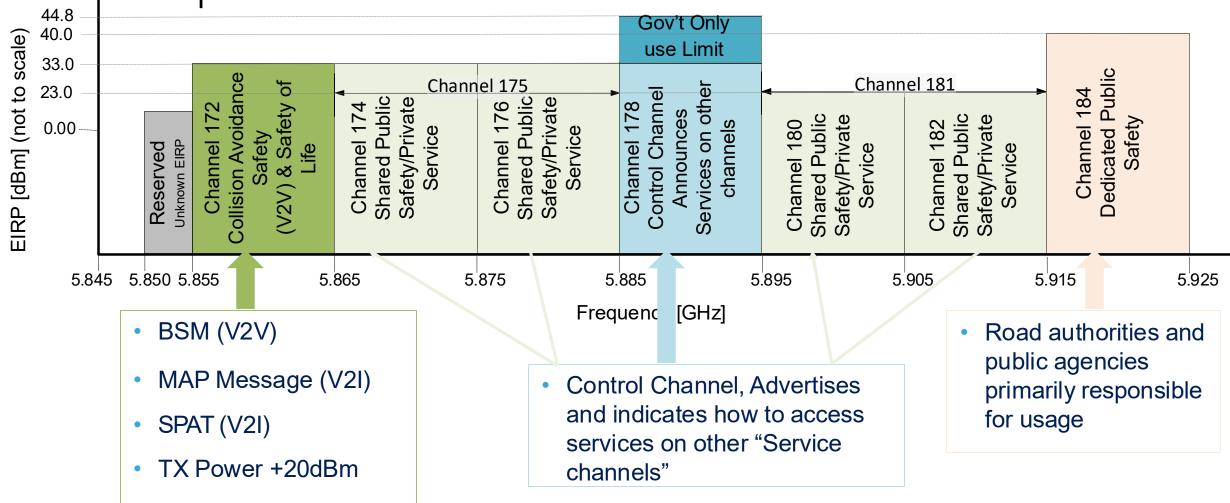
V2X System



Vehicle-to-Everything (V2X)

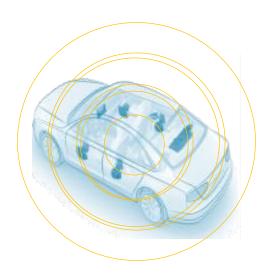


FCC Spectrum Allocation for DSRC of ITS



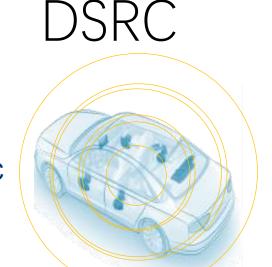
EIRP: Effective Isotropic Radiated Power **ITS**: Intelligent Transportation Systems

Source: Federal Communications Commission FCC 03-324

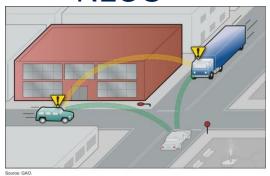


Wireless Access in Vehicular Environments (WAVE)

- Amendment to IEEE 802.11-2012 to support WAVE/DSRC
- no authentication, no access point/no association
- 5.8 5.9 GHz OFDM



- Fast Network Acquisition & low latency (<50msec)
- Priority for Safety Applications
- Interoperability
- Security and Privacy (ensured through a root certification system)



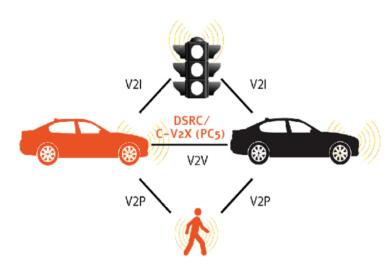
- Broadcasts BSMs 10 times per second
- Transmit power are about 100mW (20dBm @Antenna Port - Per IEEE802.11-D.2.2 Transmit power level) with a nominal range of 300m (360° coverage)
- DSRC units share the same channel

C-V2X Basics

C-V2X is a V2X radio layer:

- C-V2X is Device-to-Device (D2D) communication service added to the LTE Public Safety ProSe (Proximity Services) Services
- C-V2X makes use of the D2D interface PC5 (aka Side Link) for direct Vehicle-to-Everything communication
- C-V2X takes the place of DSRC radio layer in relevant regions
- V2V, V2I and V2P

Device-to-Device Communication



V2X - Vehicle to Everything

ITS Layers Remain Unchanged!

C-V2X Basics

- C-V2X Transmission Mode 4:
 - Mode 4 Stand alone, distributed
 - Uses GNSS for location and time for synchronization

Transmission Mode 4

C-V2X Basics

- Transmission Mode 4:
 - Out of Coverage operation: The transmitting vehicle is not connected to the network
 - No SIM card or inter-operator collaboration is required
 - Each vehicle performs its own scheduling and allocation
 - No dependency on inter-vehicle components (eNB, Allocation Server etc...)
 - Mandatory for SAE, ETSI

Transmission Mode 4

C-V2X Air Interface

• C-V2X is based on LTE (4G) uplink transmission - SC-FDMA (Single

Carrier Frequency Division Multiple Access) signal:

- A single carrier multiple access technique which has similar structure and performance to OFDMA
- Utilizes single carrier modulation and orthogonal frequency multiplexing using DFT-spreading in the transmitter and frequency domain equalization in the receiver
- A salient advantage of SC-FDMA over OFDM/OFDMA is low Peakto- Average Power Ratio (PAPR). Enables efficient transmitter and improved link budget

In Summary

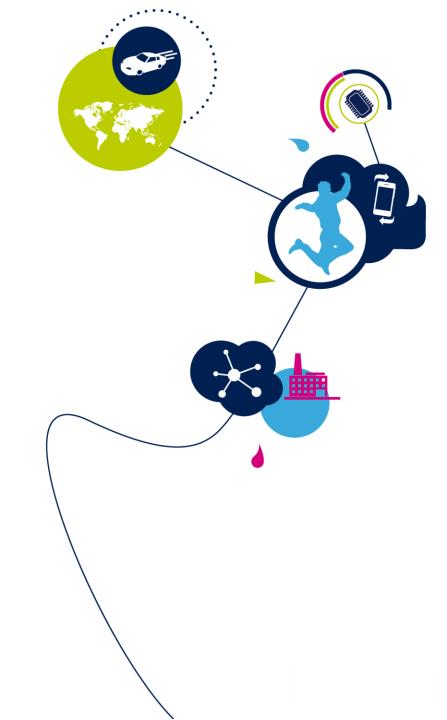
Both Technologies will do the JOB!

But:

- Industry is waiting for regulatory certainty, Government Mandate is preferred!
- C-V2X has to reach automotive production maturity
- Implementation and deployment will depend on OEM system architecture
- The market will demand standalone V2X module for OEMs and aftermarket because V2X is a safety critical sensor.

Automotive ADAS Systems

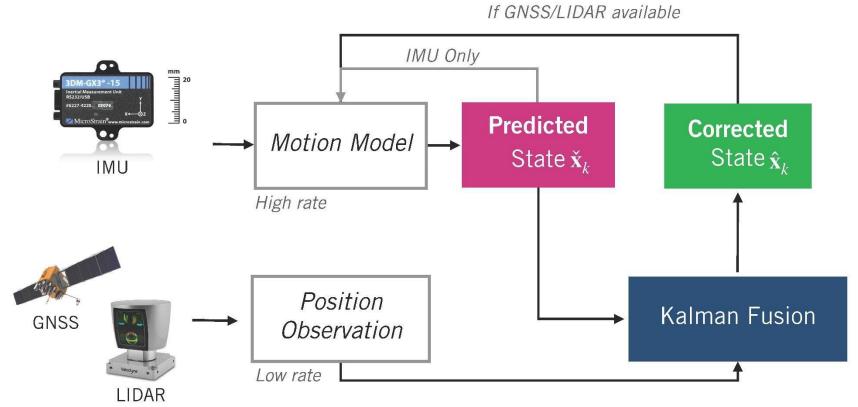
Sensor Fusion Example



Multi-sensor Fusion for State Estimation

Extended Kalman Filter | IMU + GNSS + LIDAR

This is a rule based fusion example, we will see another fusion later



Source: "State Estimation and Localization for Self-Driving Cars", Coursera by University of Toronto

PART II: Reducing Human Efforts in Visual Perception

Autonomous Driving Lab, DAMO Academy

Carrier

Largest Autonomous Driving in logistic

200 + Cities

800 + AutoVehicle

 $\overline{\mathbf{F}}$ 50M+ orders

Truck

Research -> Product

50+ routes across China

30+ test vehicles

100M+km test milage

Heavy Truck Preliminary Exploration

Built 20+ Auto-Truck

Cainiao, Shentong

Release in 2027

50

Autonomous Driving Vehicle Is Also A Robot

Autonomous Driving Understand and Act in 3D World

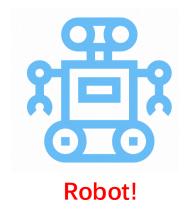
Bus

Heavy Truck

Taxi

Carrier

Common Framework of Robotic System



Perception

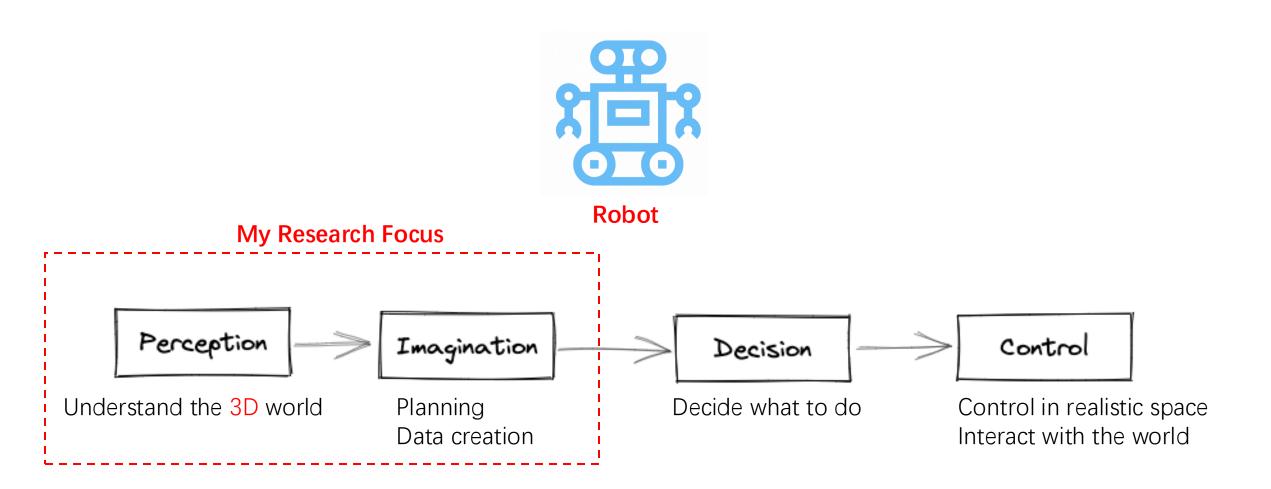
Understand the 3D world

Planning
Data creation

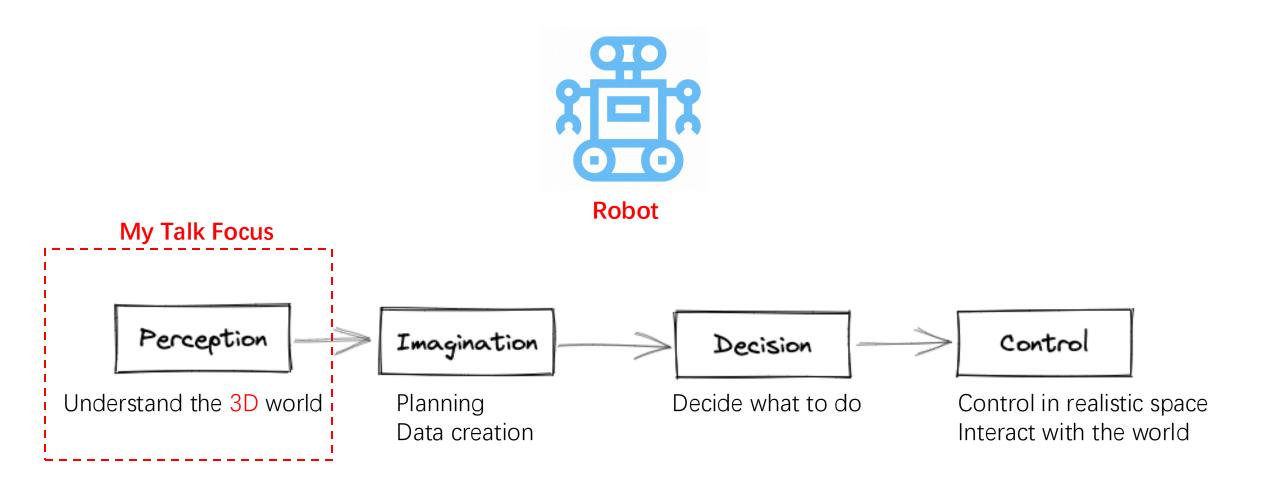
Decide what to do

Control in realistic space Interact with the world

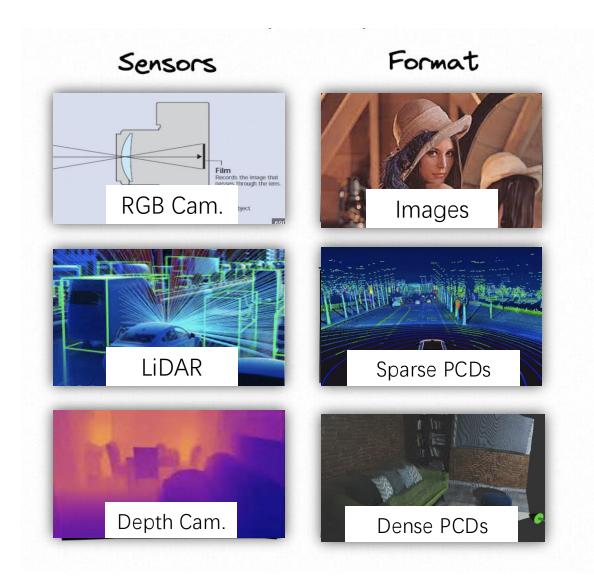
My Research Focus: Perception + Imagination



My Talk Focus: Perception

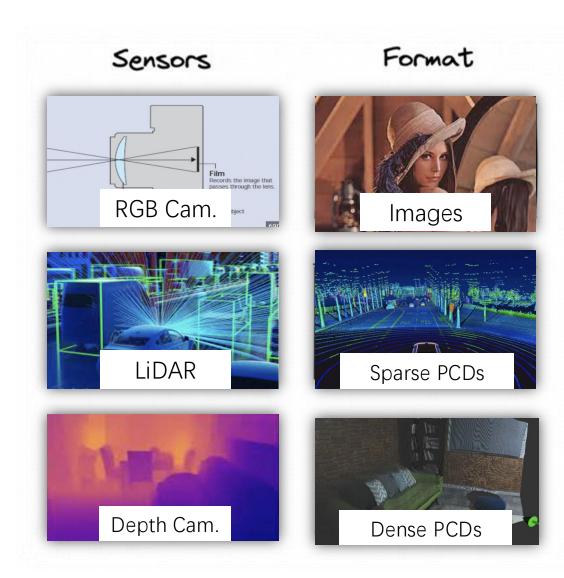


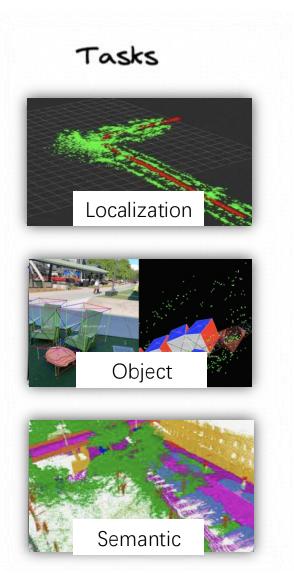
What is Visual Perception?



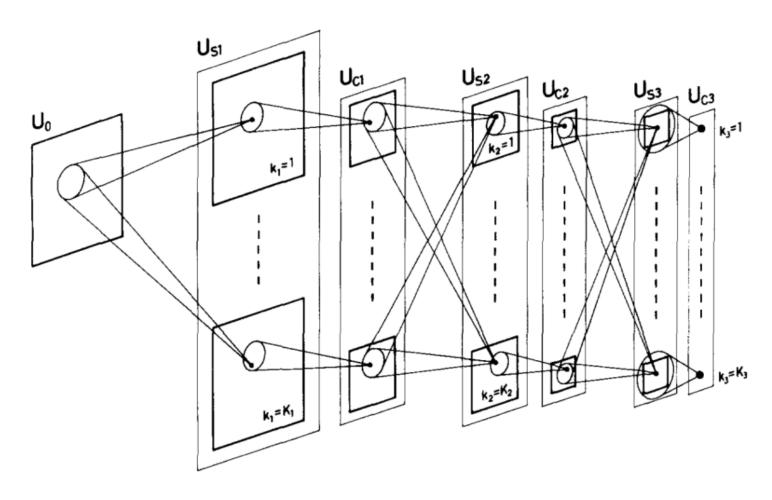


Visual Perception in 3D



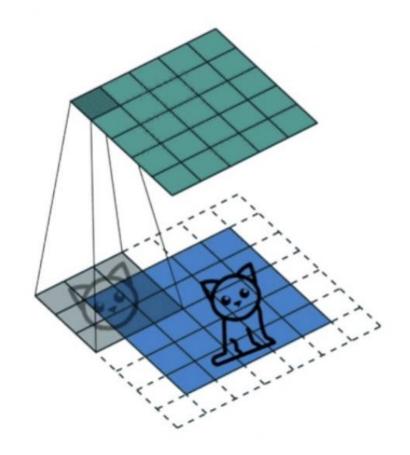


Convolutional Neural Networks

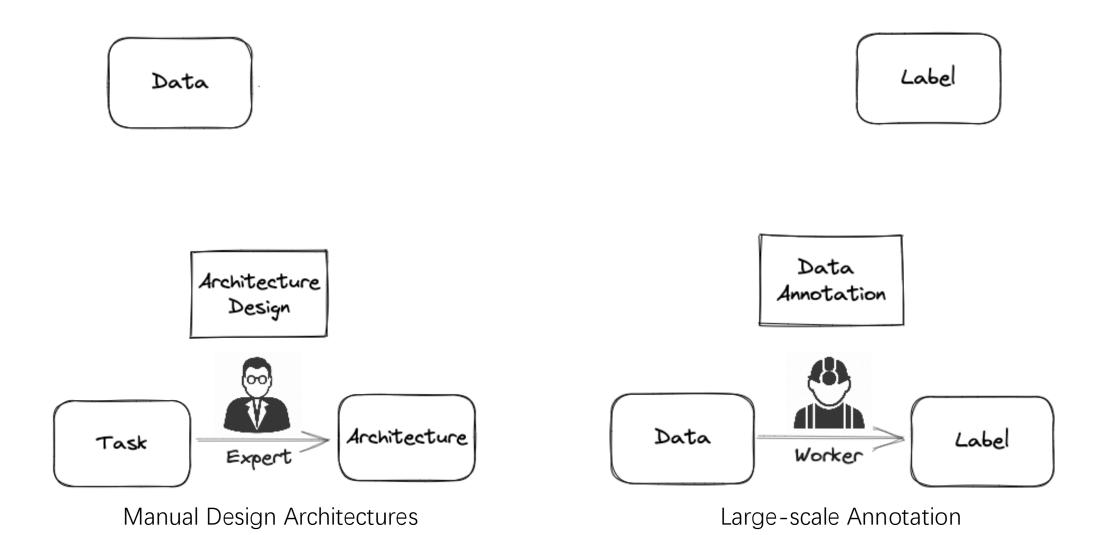


Convolution is template matching ...

- with a sliding window
- abstract templates
- similarity measured by dot product
- stronger activation, better matching



Supervised Learning in Visual Perception



What are Key Challenges in Supervised Visual Perception?

20+ Architectures in one product?

More Products?

- 1. Large Efforts in Architecture Design
- 2. Large Efforts in Data Annotation

Heavy Human Efforts in Visual Perception

Key Challenge 1: Large Efforts in Architecture Design

Key Challenge 2: Large Efforts in Data Annotation

ML Expert

- designing network
- experiments
- maintaining system
- integration and etc.

Cost: 1 Million per person

Output: 1-2 Model per year

3D Data Annotation

- Low unit price
- Large-scale data
- > 10 Million annotation

Company Cost

> 40 Million per year

Reducing Human Efforts in Visual Perception

AutoML

EvalNAS, ICLR 26 LR, CVPR 21 SuperNet, TPAMI 22

Address Challenge 1: Large Efforts in Architecture Design

- Identifying why NAS cannot surpass random search
- Our Landmark Regularization solution to address

We will not cover it in this lecture

Reducing Human Efforts in Visual Perception

Address Key Challenge 2: Large Efforts in Data Annotation

- Auto-Labeling and pseudo labels to save human efforts
- High-performance and robust 3D perception framework

Reducing Human Efforts in Visual Perception

EvalNAS, ICLR 20 LR, CVPR 21 SuperNet, TPAMI 22

. . .

BEVFusion, NeurIPS 22 BEVHeight, CVPR 23 SMSOP, ECCV 18

Al System

- Role: Chief Architect
- Broader AutoML
- Deployed in Alibaba

Address Key Challenges 1 & 2:

- Address both challenges together
- A platform to integrate our latest research advances

Key Challenge 1: Large Efforts in Architecture Design

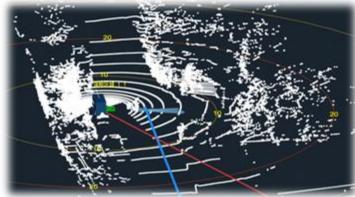
Key Challenge 2: Large Efforts in Data Annotation

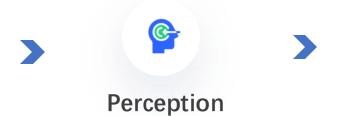
Perception in 3D World

Perception in 3D Understanding

Sensor Data

Camera LiDAR Radar etc.



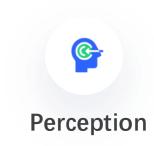


- Brain of robotics
- Similar to human
- The only approach to understand the world!
- Data centric
- Deep Neural Networks

Vectorized space

3D digital world

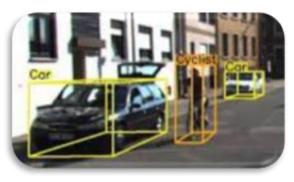
3D Understanding Tasks



Multi-object **Tracking**



Point-cloud Segmentation



Object **Detection**

Depth Completion

Why 3D Annotation with Multi-sensor Data Is Hard?

Red: GroundTruth

Example of 2D Object Box Annotation

Why 3D Annotation With Multi-sensor Data Is Hard?

Red: GroundTruth

Blue: Common annotator

Example of 3D Object Box Annotation (Bird eye view of 3D point clouds)

Why 3D Annotation With Multi-sensor Data Is Hard?

Red: GroundTruth

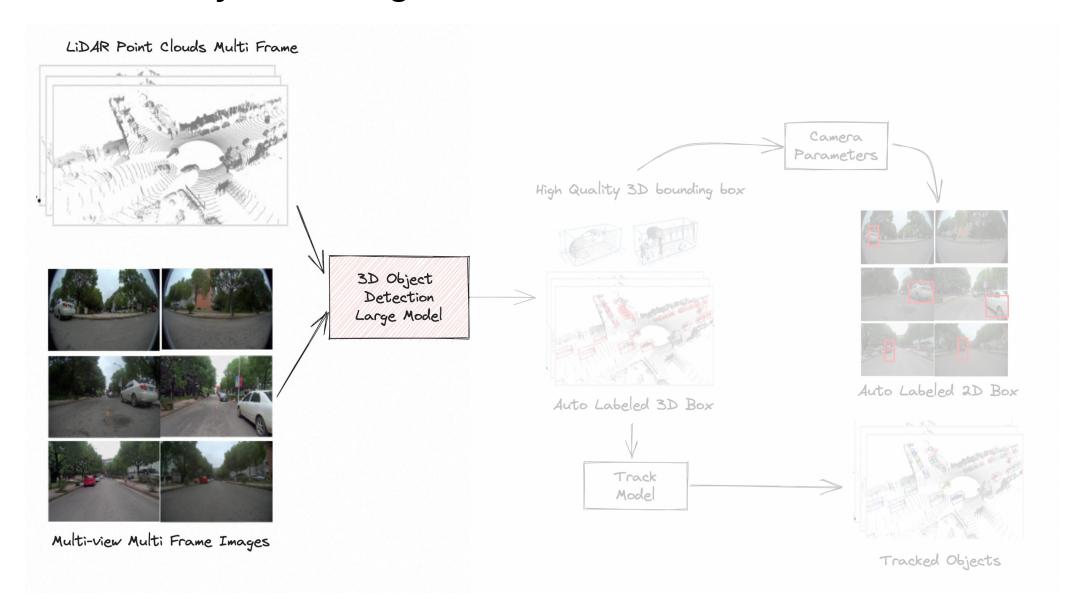
Blue: Common annotator



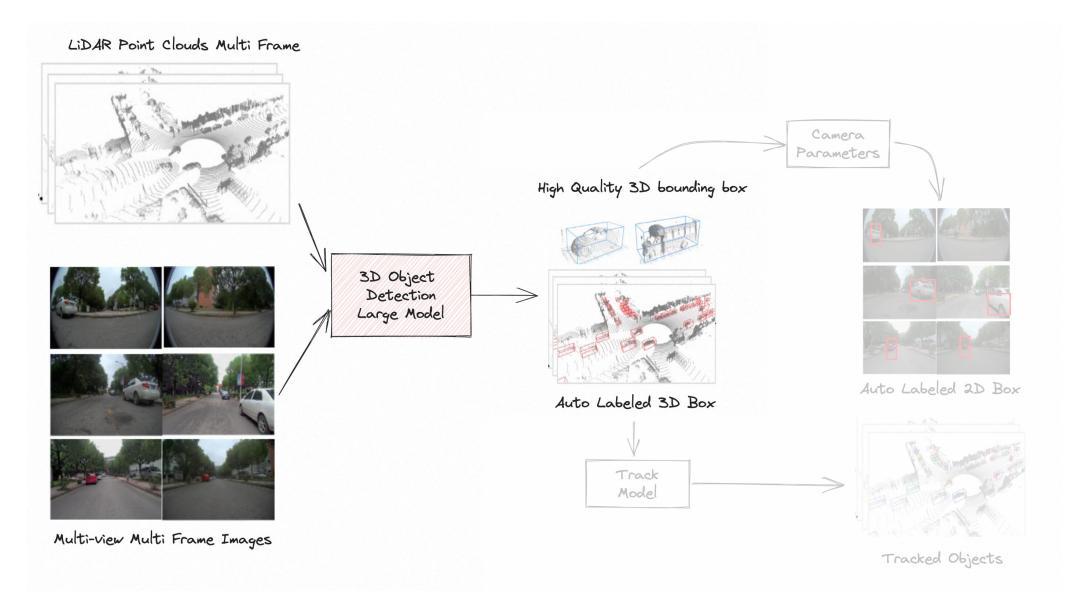
Example of 3D Object Box Annotation (Bird eye view of 3D point clouds)

Aggregating 100+ frames!

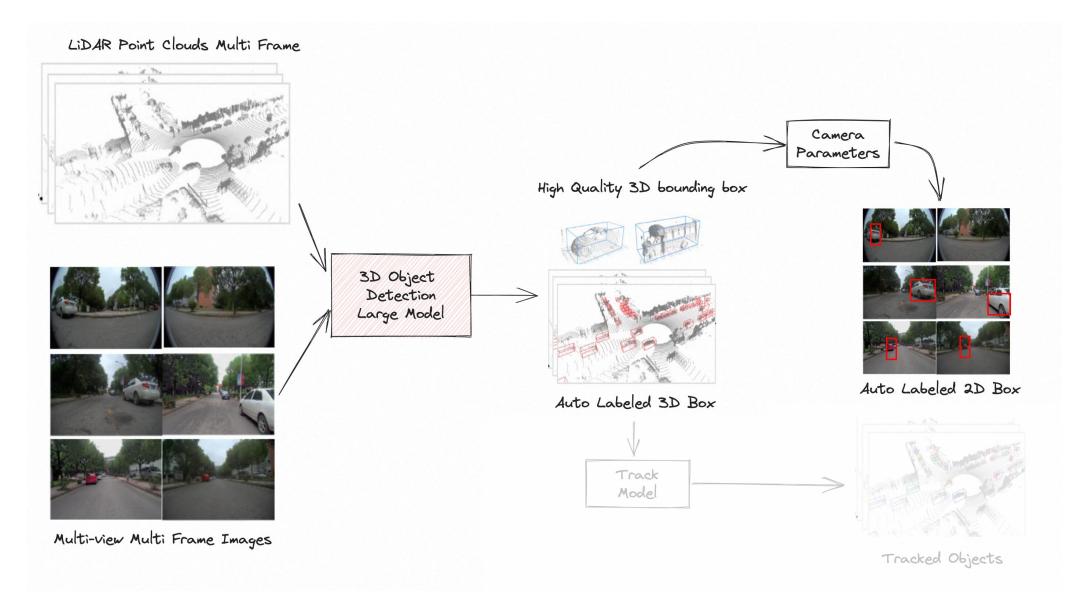
AutoLabel System: Large model as Pseudo Labeler



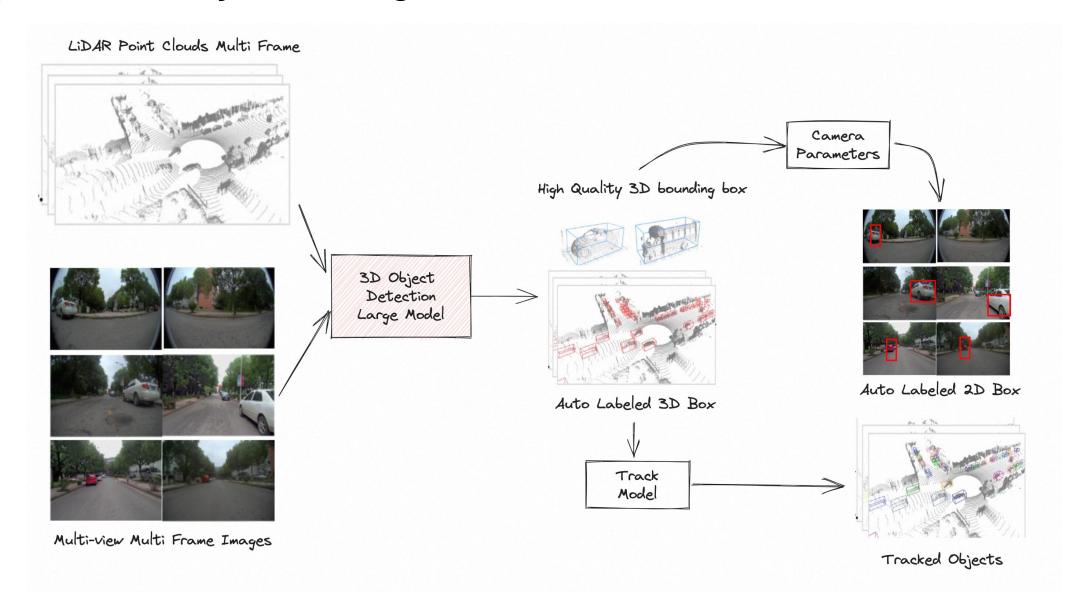
AutoLabel System: Large Model as Pseudo Labeler



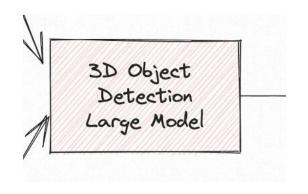
AutoLabel System: Large Model as Pseudo Labeler



AutoLabel System: Large Model as Pseudo Labeler

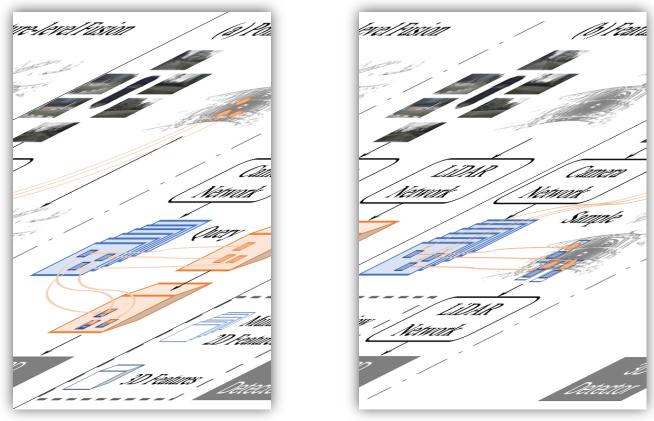


AutoLabel System: Large Model as Pseudo Labeler



Reduce **Better Base Model Human Efforts**

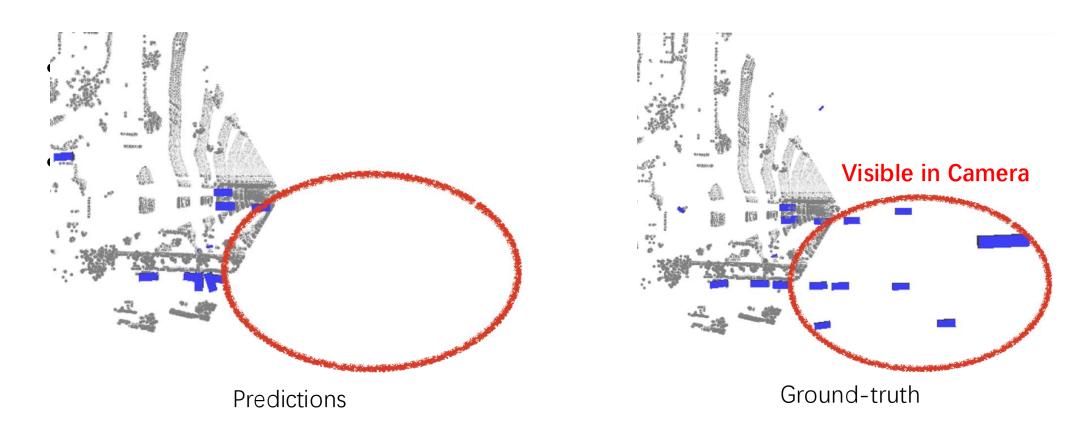
State of The Art Multi-modality Base Model



Existing Frameworks of camera-lidar fusion

Fusion starts from point clouds, what if LiDAR fails?

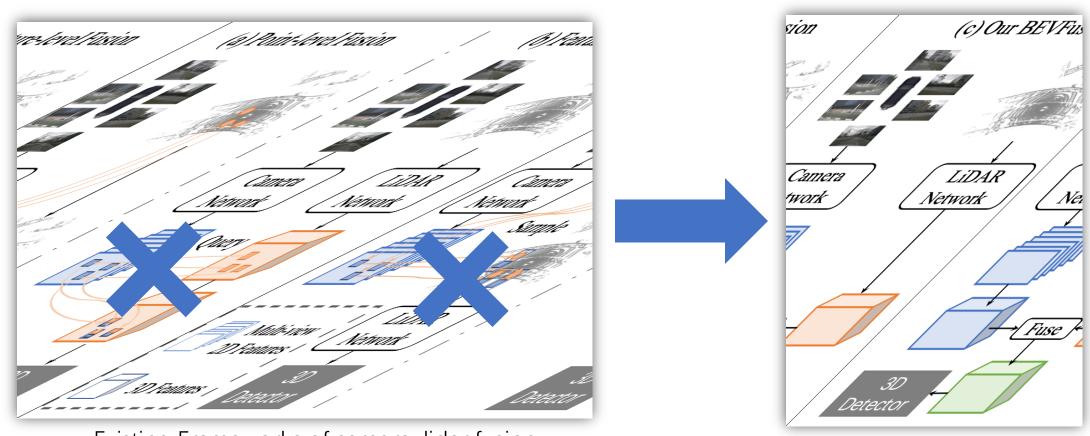
SoTA Base Model Fails w/o LiDAR Input



• Base model with 2 modalities should not fail when 1 missing

0

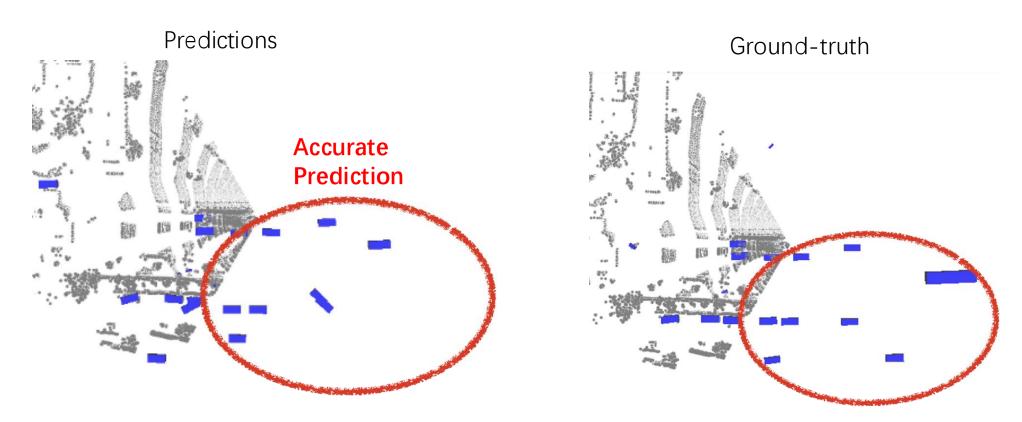
BEVFusion: A Simple yet Robust Base Model Framework



Existing Frameworks of camera-lidar fusion

•

Our BEVFusion Framework is Robust to LiDAR Failure



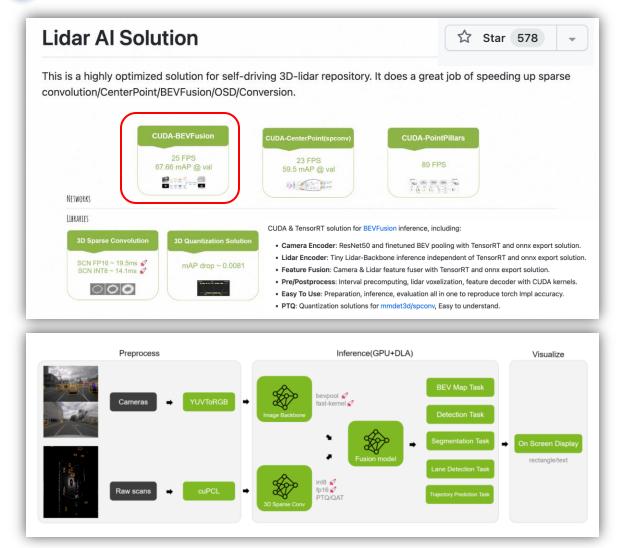
- The first robust framework that is agnostic to LiDAR failure
- +30 mAP compared to baselines
- Become a de-facto standard
- Many follow ups (MetaBEV, BEVFusion 4D, etc.)

BEVFusion Deployed in Alibaba

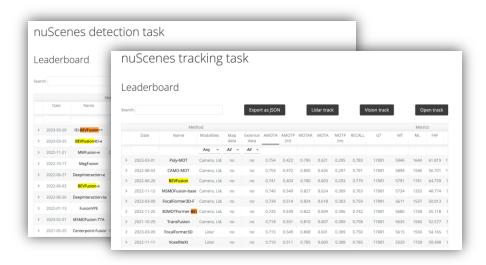
High- Quality Ground- truth	Labeler Army	v.s.	Auto Label	
Accuracy (mIoU)	83.12		91.35	(8.23+)
Time (per box)	25s		0.005s	(<mark>5000</mark> x faster)
Cost (per box)	1 RMB		0.0001 RMB	(10000x

- BEVFusion + AutoLabel system surpasses human level annotation! eaper)
 - By a large margin

BEVFusion Other Impact



Nvidia Integration as a default AI solution



Leading in various tracks of leaderboard

Integration by various AV companies

Al System ADLab AutoML System

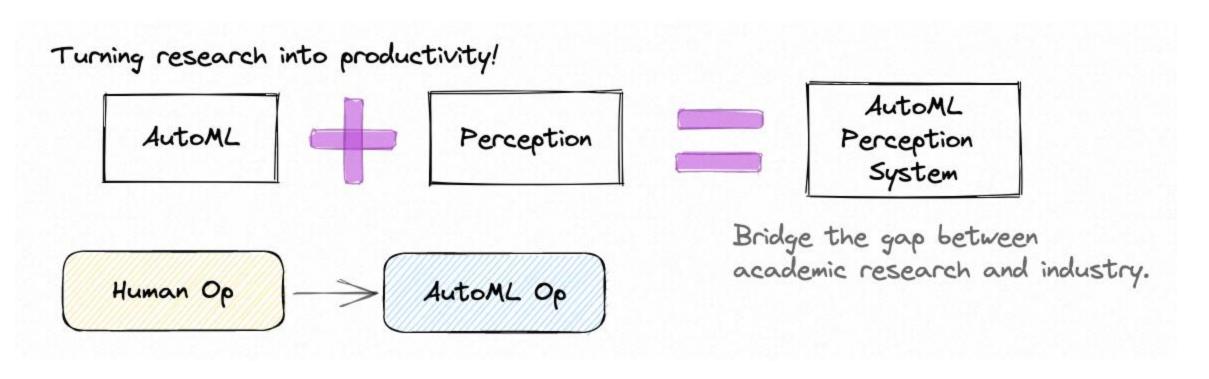
Key Challenge 1: Large Efforts in Architecture Design

Key Challenge 2: Large Efforts in Data Annotation

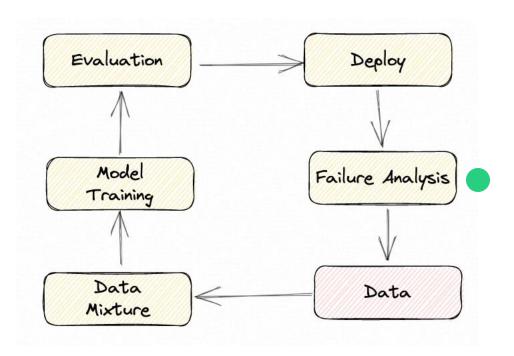
0

Reducing human efforts by building an Al System

- Automatic machine learning as a system
- My Role: Chief architect



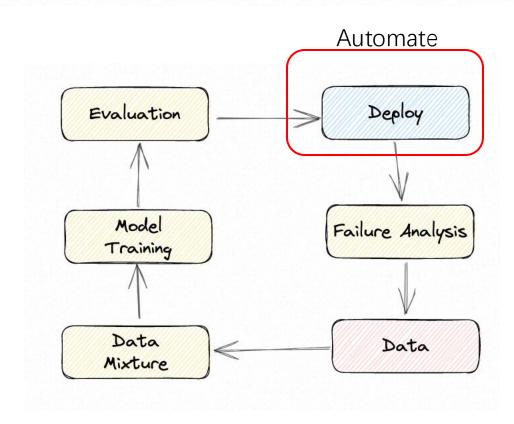
Manual update of an existing deep learning model



- All steps are manually done
- Cost 90 days for 1 model
 - Update an existing model
 - Does not include first design time

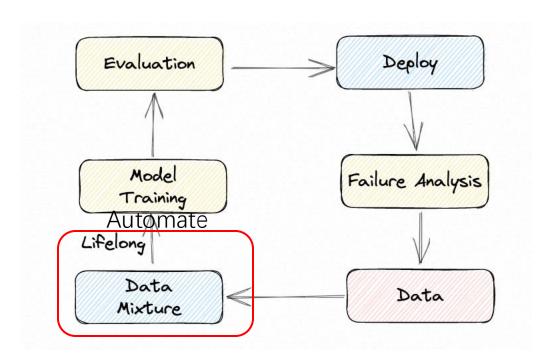
Step 1: Automatic deployment





- Automation for API services
- Across 6 platforms from hard-ware deployed
- Save ~30 days

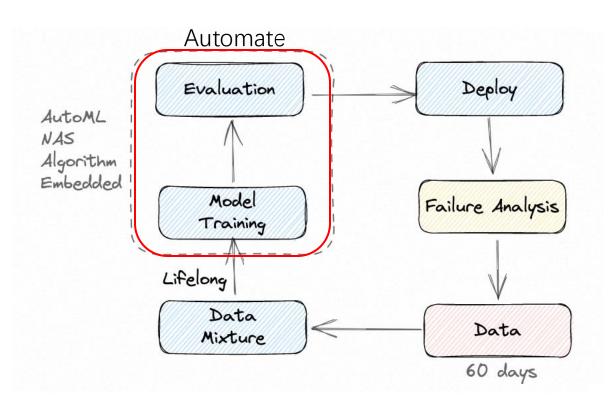
Step 2: Use active learning for data mixture process



- Automatic data mixture
- Lifelong learning to train the network
- Save ~5 days
- Without performance drop

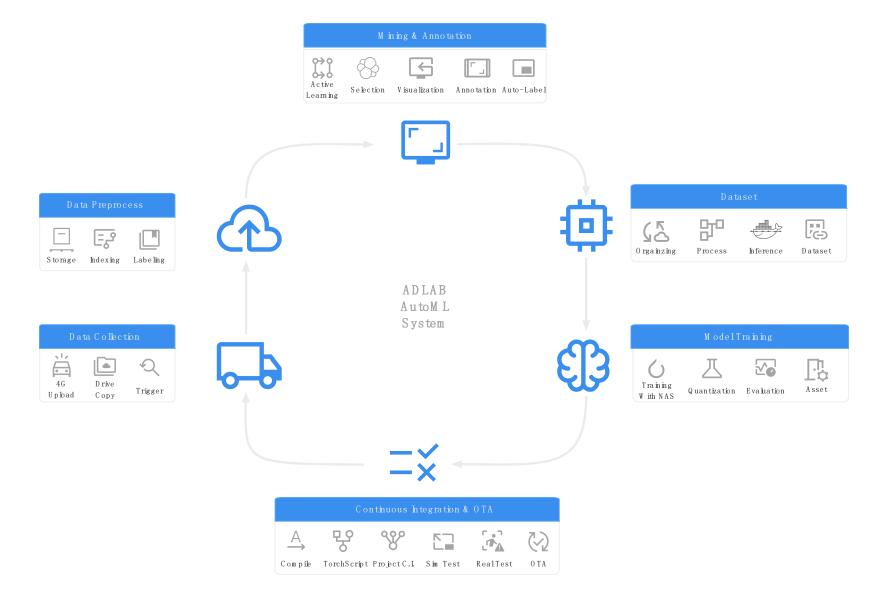
Step 3: Incorporate NAS into AutoML System





- Incorporate NAS in 3D backbone
- Support quantization
- Save ~20 days
- Performance Improves ~10%

Overview of the system



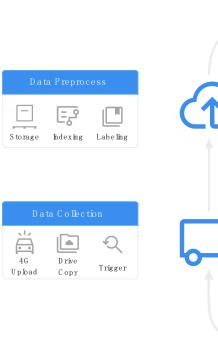
Overview of the system

Performance

- +10% mAP on object detection
- +5% mIoU on point-cloud segmentation
- Fix 150+ failures automatically

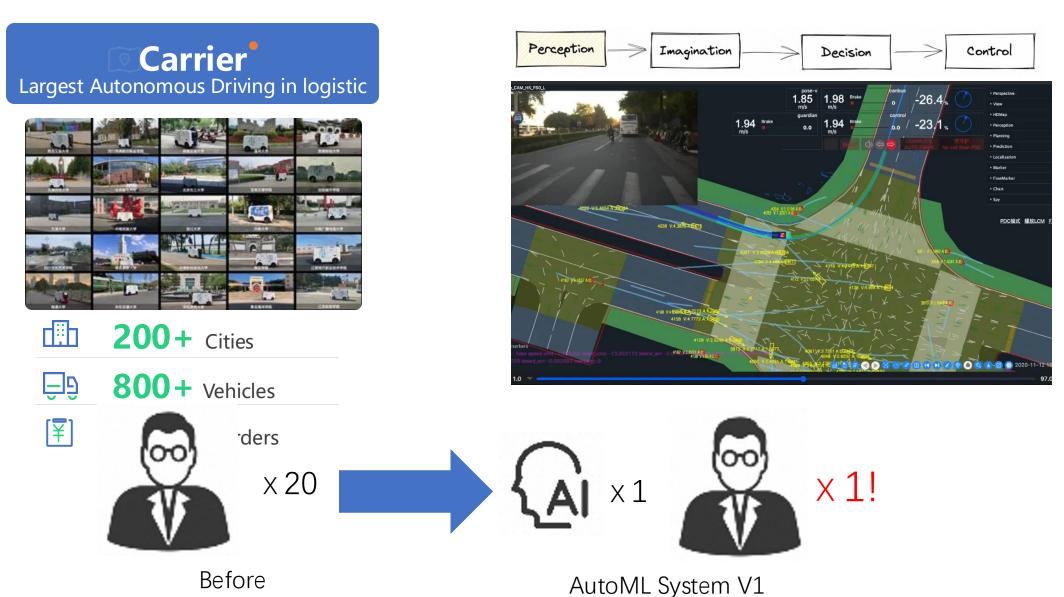
Efficiency

- Time spent: 90 → 35 (-60%)
- Manual steps: 192 → 7
 (-97%)





Outcome: Deployment of AutoML System V1



Conclusion Future Work

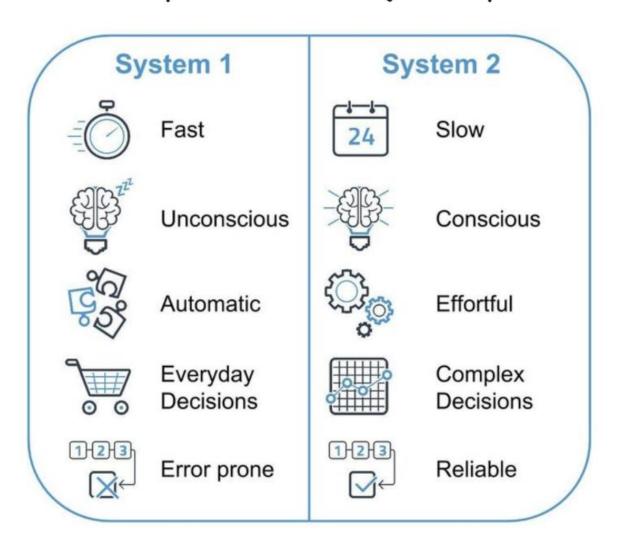
从自动驾驶到自主智能 工程驱动的创新浅谈

Kaicheng Yu 2025.5.16

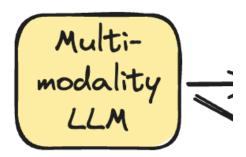
0

Review of the Development of Multimodal Large Language Models

Large Model as System 1 v.s. Agent System as System 2?



Autonomous Intelligence Lab AI System Focus



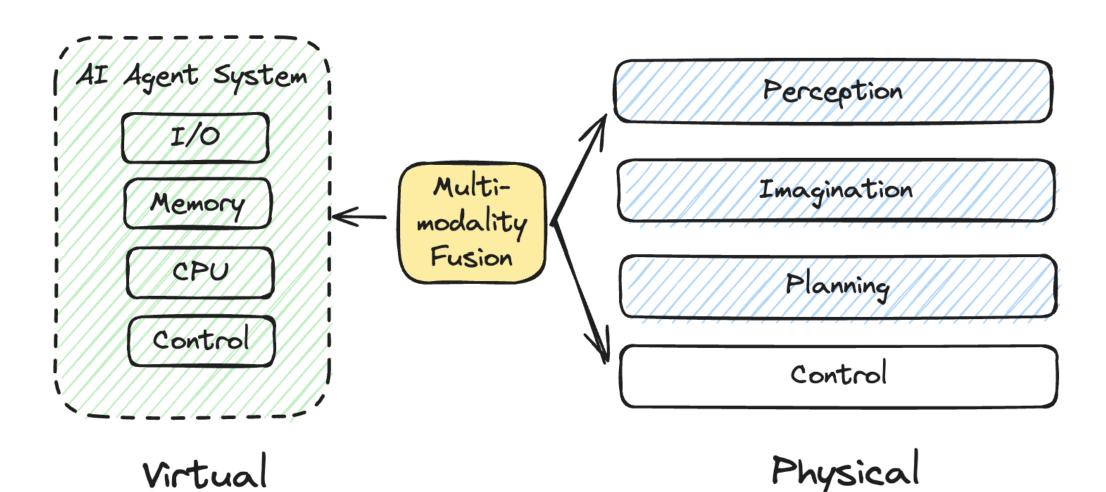
Autonomous Intelligence Lab AI System Focus

AI Agent System | Multimodality
Fusion | Embodied / Autonomous Driving

Virtual

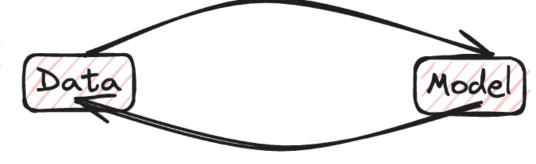
Physical

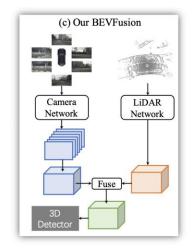
Autonomous Intelligence Lab AI System Focus



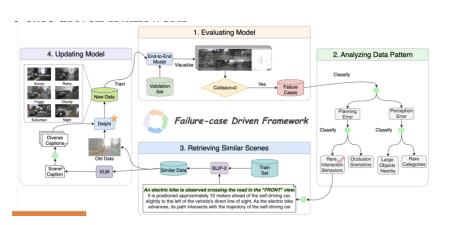
Autonomous Intelligence Lab AI System Focus

Multimodality Embodied / Autonomous Driving ! Fusion



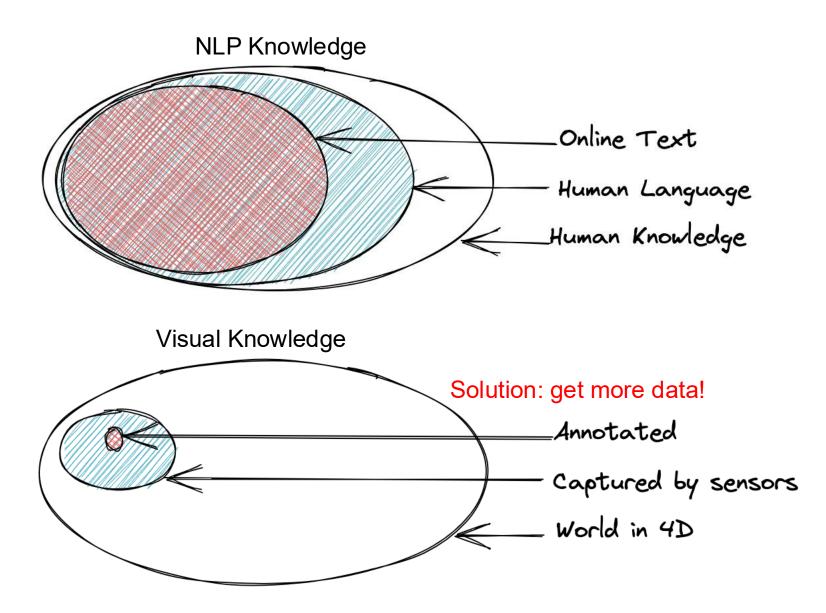


BEVFusion



Closed-loop Data Engine to self-correct

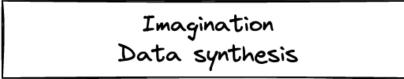
Challenge: Lack of Sufficient 3D Data



Challenge: Perception Inevitably Fails when Lacking 3D Data

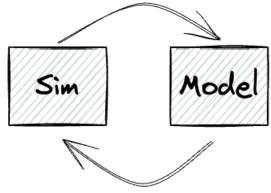
•0

Work in Progress: Imagination via 3D Data Generation



LiDAR simulation via implicit rendering

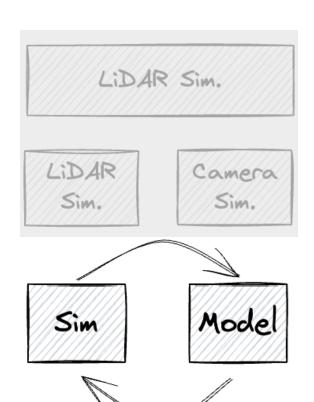
• LiDAR + Camera in one NeRF



• Synt. Data -> Self-correct -> AD Perform.

•0

Work in Progress: Imagination via 3D Data Generation



LiDAR simulation via implicit rendering

LiDAR + Camera in one NeRF

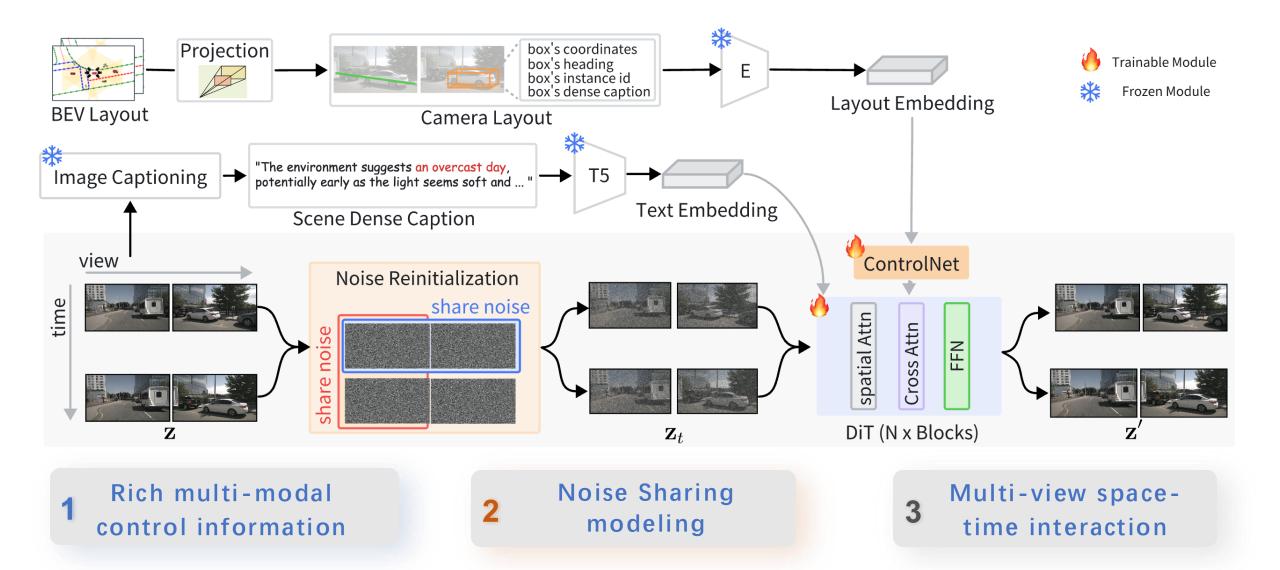
• Synt. Data -> Self-correct -> AD Perform.

MLLM in Real world: A World Model Approach

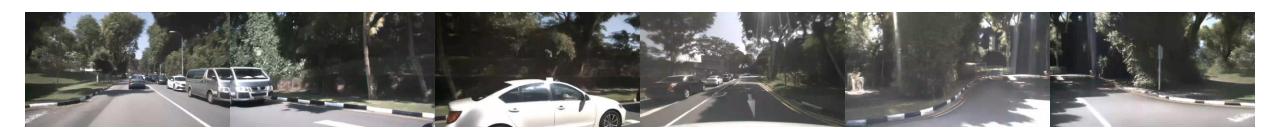
World Model in Autonomous Driving

Generated scene

Delphi: AD multi-view video generation model

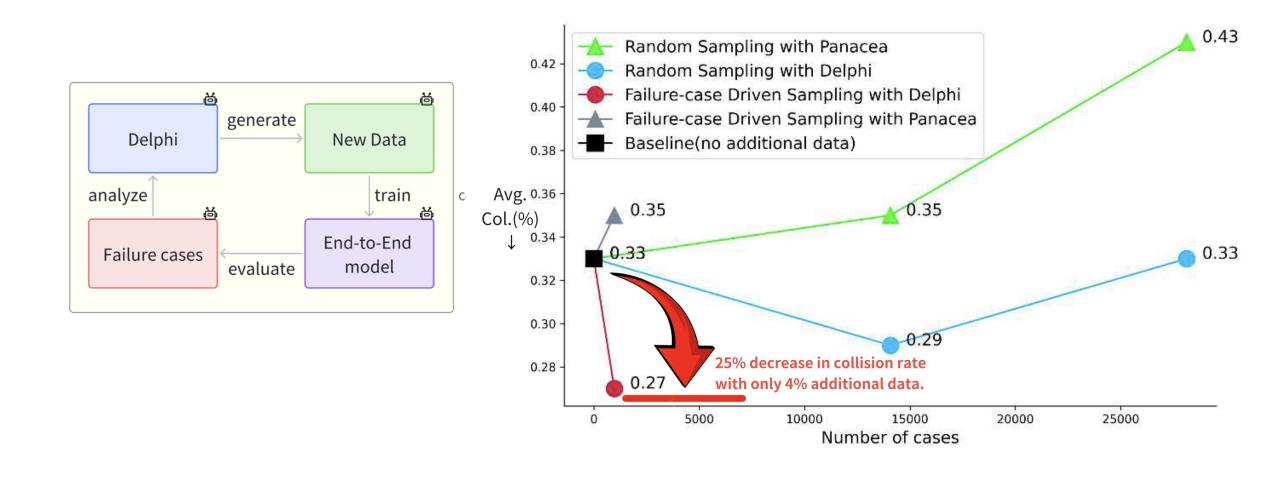


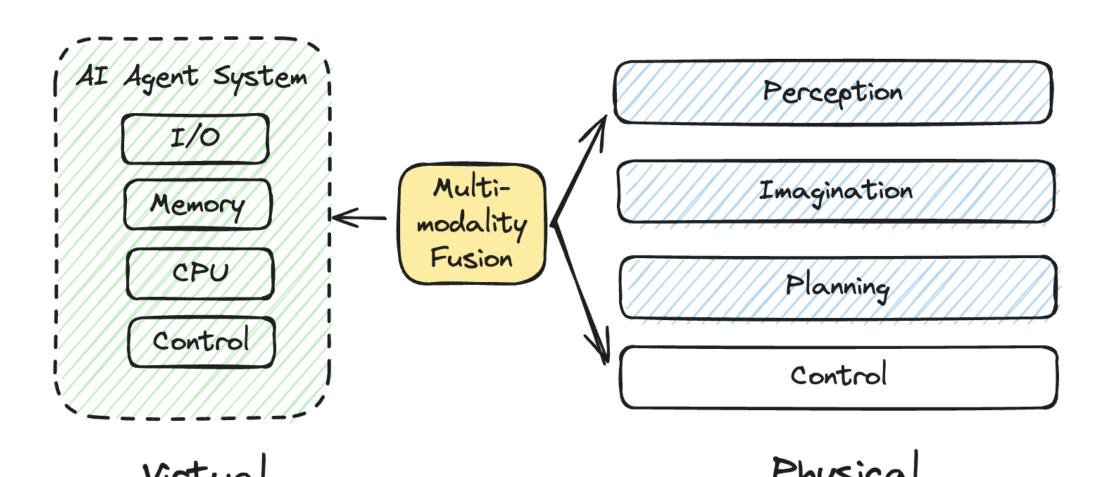
Long sequence generated results



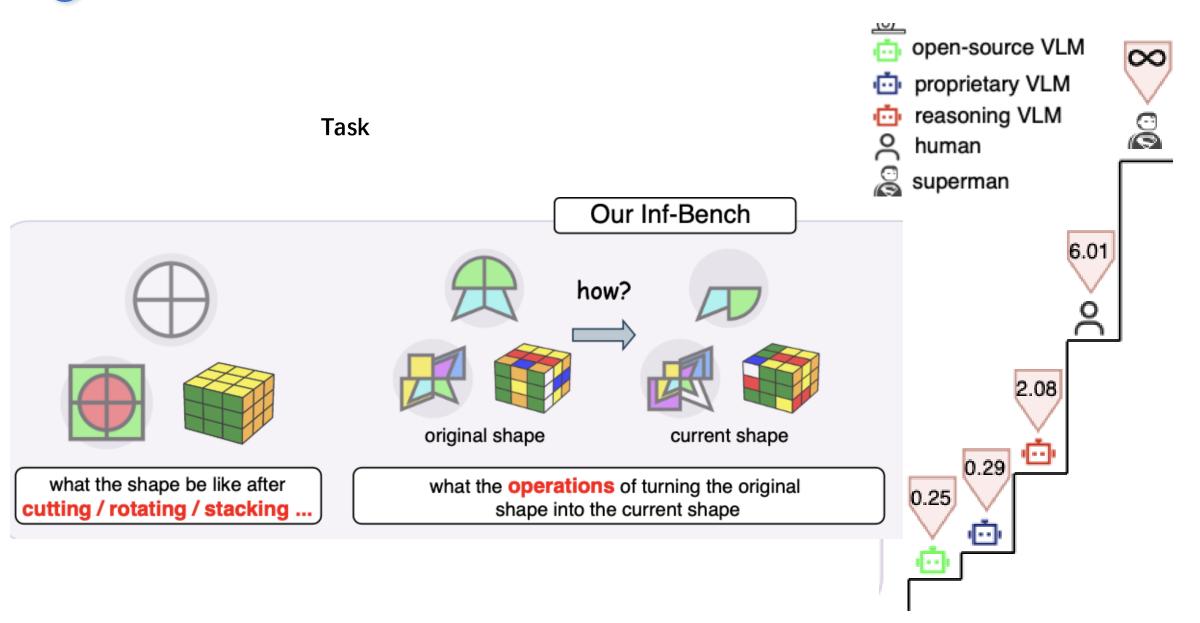
•

A data engine to self-correct autonomous driving system

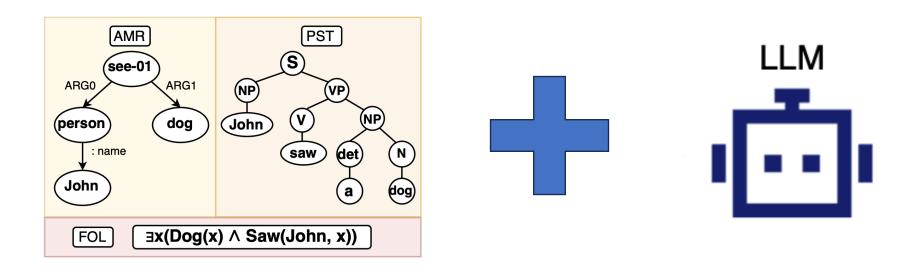


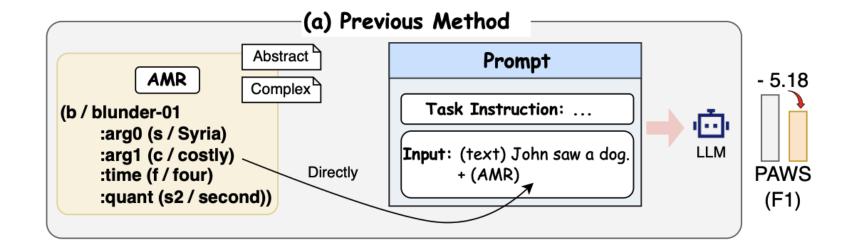


LLM: Fail to 'really' logical thinking in multi-modal

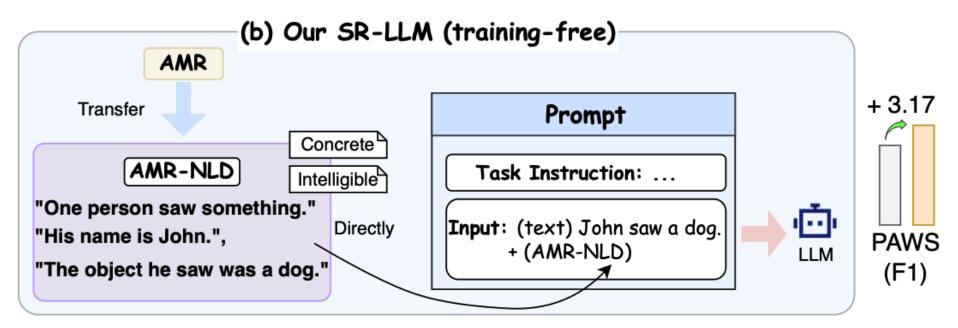


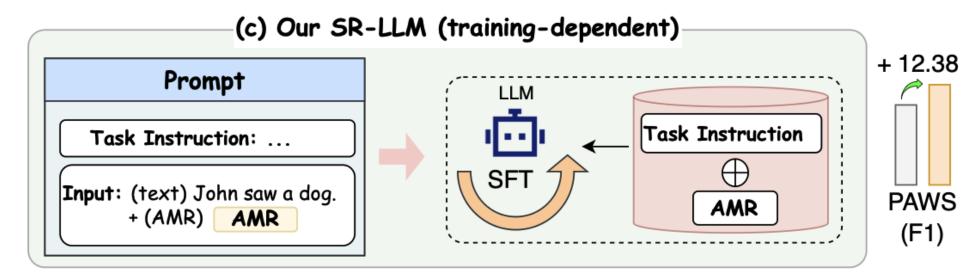
LLM + Structure Representation: A New Renaissance



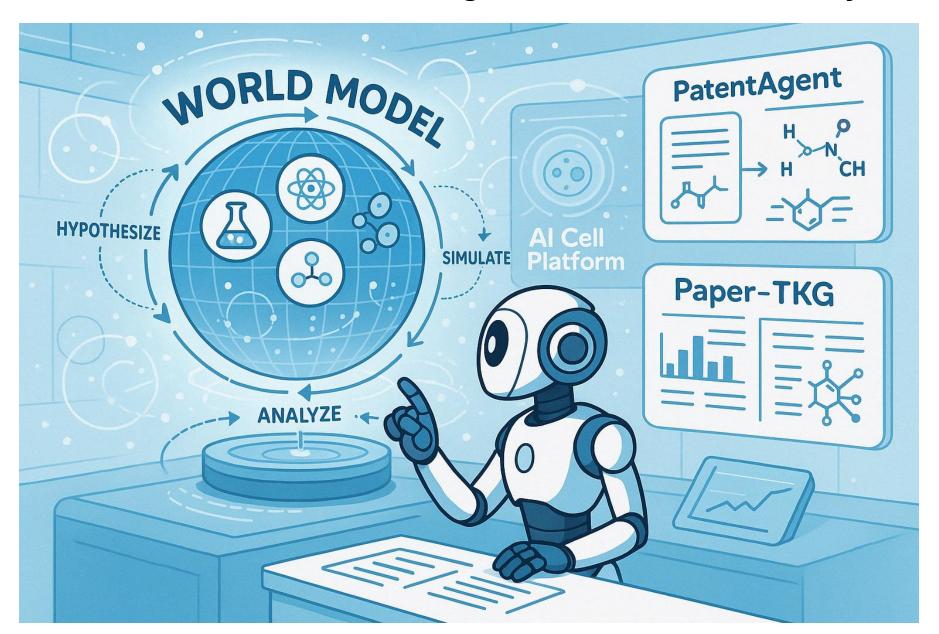


Structure Info Enhance the Reasoning





Future: Combine the knowledge for science discovery



Why Autonomous Intelligence?

主流机器学习成就,依赖监督学习,在自动驾驶、具身智能数据是绝对瓶颈

机器目前来说,没有主动思考能力

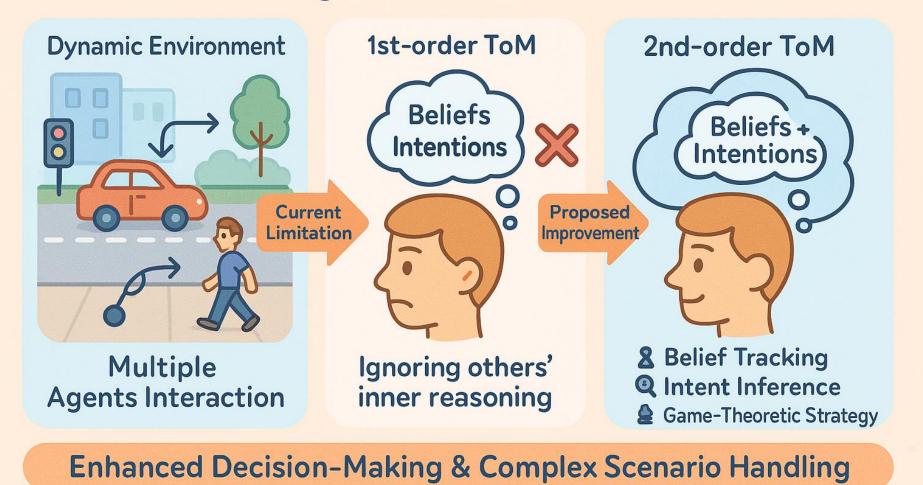
对于人类20个小时的简单实操即可开车,但VLA算法几千小时的输入都不能泛化

我们期待:

结合认知心智理论、神经科学等科学研究, 实现规则驱动、增强机器学习系统的鲁棒和自主性

From Autonomous Driving to Al Agent

Abstracting Agents & Environments with Higher-Order ToM



AutoLab: We are hiring!

Position

- 博后、助理研究员
- PhD (26 Fall)
- 研究助理(全职)
- 访问学生

研究方向

- 认知驱动的AI 智能体行为研究
- 世界模型驱动的数据闭环联合优化
- 规则、知识驱动的大模型应用