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‘O Large Al Model Will Change The World Virtually
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‘O How does Al Model interact with physical world?

Large Al Models
Computer (Desktop or Mobile)

Physical
World



‘O How does Al Model interact with physical world?

Large Al Models

Physical
World

Brain Large Al Models



“© Autonomous Driving Vehicle Is Also A Robot

Autonomous Driving
Understand and Act in 3D World

Heavy Truck Carrier
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© Large-scale deployment of AV across China CMone  EAR

Shop Warehous Warehous Shop

Carrier Heavy Truck

Largest Autonomous Driving in logistic Preliminary Exploration

1D 200+ cities @ 50+ routes across China [ﬁ Built 20+ Auto-Truck
IAnS L.
I;I@ 800+ Autovehicle Elg 30+ test vehicles @ Cainiao, Shentong

= 50M + orders @v T00M +km test milage < Release in 2027




PART I General introduction of

Autonomous Driving System
(ADS)

Source: STDevCon19 7.5 Overview of ADAS-Active-Safety



Automotive ADAS Systems

Overall Automotive ADAS System
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Automotive ADAS Systems

ADAS Overview




Overview of ADAS Technologies

- (Targes ) ©

-0 ®

Power
Supply/Management




ADAS Sensors - Needed for Perception




The 5 Levels of Vehicle Automation

Adding Senses

» Accelerometers and Gyro
Steering Wheel Angle
Ultrasonic sensors

Front Radar Sensor

Blind Spot sensor

Rear View Cameras
Front View Cameras

. Partial Conditional
* Surround View Cameras Automation Automation
(Level 2) (Level 3)

A

Driver Assistance
(Level 1)

Driver monitors Driver needed to
system at all be able to resume
times control

Driver in control

No Automation
(Level 0)

Source: SAE standard J3016

Driver in control Levels 0-2 Human driver monitors the driving

environment

Levels 3-5 Automated driving “system” monitors

the driving environment

High
Automation
(Level 4)

Driver is not

required for

specific use
cases

Learning to Drive

» Systems Networking

» Sensor Fusion
Distance Measurement
* Traffic Sign Recognition
Lane Reconstruction
Free-path Definition
Precise Positioning
Real-time Mapping
Driving Rules
Implementation

Critical Arbitration

Full
Automation
(Level 5)

No Driver
Required



Sensor Fusion 1s Key to Autonomous

No sensor type works well for all tasks and in all conditions, so sensor
fusion will be necessary to provide redundancy for autonomous functions
Most likely used fusion solution in future . Good Fair ‘ Poor

o LiDAR+Radar+
' Camera Radar LiDAR ‘Ultrasonic Camera

Object detection E ' . i .

Obiject classification i .

Distance estimation

@

; »

Object edge precision o )
O

o

@

Lane tracking i ‘

Range of visibility :

Functionality in bad weather i .

Functionality in poor lighting E ‘ . E

_____________________________________

Source: Woodside Capital Partners (WCP), “Beyond the Headlights: ADAS and Autonomous Sensing”, September 2016



Automotive ADAS Systems

ADAS Vehicle Architectures




Distributed vs Centralized Processing

Distributed Processing with Object Level Fusion

Centralized Processing with Raw Data Fusion

Vehicle

s Intelligent Raw Data
ense Edge Think! Sense Capture Think!
Processing ' ACT (IQ) ACT
[ *\i Ulrasanic | \\\ Ultrasonic
} =) .
o % e Breaking * e £ 2 Early Data * Breaking
*\\ Lidar! g —L  Steering . o g g L from —L . iteerllngﬁ
8 o o Accelerating S < 2 H - Sensors ¢ Accelerating
o .
z
. Camera E Late Sensor Fusion g . Camera Sensor Hybrid Fusion . -
— Infotainment & Cluster nfotainment ster
v
Q o
CEI) { = { ‘

4, p Acceleration & E a,p Amdeéi'tiaoga% _
Rotation ! () i ETH /SPI/
S0 e e ST R
(93 | - MCU/MPU /DSP
i - MCU /MPU /DSP - RF
| 0 e .
Sensors
LOS: Line-of-Sight «  Distributed Interfaces +  Centralized Interfaces
NLOS: Non-Line-of-Sight ETH, SPI, I12C, CAN, CAN-FD . ETH, SPI, 12C, CAN, CAN-FD
«  RADAR, Ultrasonic, V2X, IMU, Wheel Odomerty, GNSS «  V2X,IMU, Wheel Odomerty, GNSS
«  MIPI(CSI-2), GMSL(Maxim), FPD-Link(Tl), PCle, HDBaseT(Valens) *  MIPI(CSI-2), GMSL(Maxim), FPD-Link(Tl), PCle, HDBaseT(Valens)
. Video Cameras? . Radar, Ultrasonic
. Lidar? . Cameras

. Lidar?



Distributed vs Centralized Processing

Example Signal Processing Flow

Centralized or Not Centralized...That is the Question! Answer: Both, Please.

Signal digitization

filtering
Windowing
Range & Doppler FFT
Detection
Tracking / Target
Creating

Object Classification

®
c
L=
()
o
c
?
-
=
o
—
o
[
14

transmitting, reflection

receiving/down-converting,
Prioritizing and reporting

objects on the network

High Bandwidth Link

» 0, >>1 Gbps
o
» @, ~100Mbps or more T o = n<: 5 5
= £E a2En
» ©, 1-2Mbps §3§ §§=5
Source: 2018 IHS Markit — “Autonomous Driving-The Changes to come” i a DEVICES

Source: ADI

*  What are the Data rates requirements for each sensor?
* Centralized (i.e. SERDES?) vs Distributed (i.e. ETH?)

«  Example: 4-5 Corner Radars are utilized in high end/premium vehicles.



Automotive ADAS Systems

Vision (Cameras) System




Essential for correctly perceiving environment

Richest source of raw data about the scene - only
sensor that can reflect the true complexity of the
scene.

The lowest cost sensor as of today

Comparison metrics:

* Resolution
 Field of view (FOV)
* Dynamic range

Trade-off between resolution and FOV?




Camera-Stereo

Enables depth estimation from image data

All points on projective line to P map to p

| can locate the pointin 3D

........

One camera

Add a
/ second

camera

.
0 .
-----------

Find a point in 3D by triangulation!

Source: Sanja Fidler, CSC420: Intro to Image Understanding



The Next Phase for Vision Technology

& O,

. . . q
From sensing to comprehensive perception "

Machine learning used already for object sensing

Autonomous driving needs
« Path planning based on holistic cues
* Dynamic following of the drivable area

Deep learning is now being applied

30°



Machine Vision: ST & Mobileye

 Detection of driving lanes » Detection of more objects, more precisely
» Recognition of traffic signs » More features required for automated driving
« Detection of pedestrians and cyclists W Free-space Estimation, Road Profile

Seeing obstacles how the human eye sees \ Reconstruction
. | w u y

. | * Monitoring of environmental elements (fog, ice,

them 177, :

Adapti . 4 ooneye rain) and their safety impact
« Adapting cruise spee .

PHNS .p Partnership |. petailed understanding of the road conditions

* Emergency braking when car ahead slows allowing automatic suspension and steering

suddenly adjustment

« Highly automated vehicles

The Road to Full Autonomous Driving: Mobileye and ST to Develop EyeQ®5
SoC targeting Sensor Fusion Central Computer for Autonomous Vehicles




LIDAR Technology Overview

- LiDAR (light detecting and ranging, or “light radar”) sensors send
one or more laser beams at a high frequency and use the Time-of-
Flight principle to measure distances. LiDAR capture a high-
resolution point cloud of the environment.

« Can be used for object detection, as well as mapping an
environment

» Detailed 3D scene geometry from LIDAR point cloud ("

« LiDAR uses the same principal as ToF sensor,
but at much longer distances, minimum 75M for
“near field” and 150-200M for “far field”.

- > i<— 2-10 nsec -

'_, '_, '_, . Measured [l Photon travel X Speed of
. distance | time /2 light

\




Automotive ADAS Systems

LIDAR System




LIDAR Techniques

There are multiple techniques currently under evaluation for LIDAR

including rotating assembly, rotating mirrors, Flash (single Tx AUTOMOTIVE LIDAR
source, array Rx), scanning MEMS micro-mirrors, optical phased SYSTEMS
array.
© Temotys
From a transmitter/receiver (Tx/Rx) perspective the following SCANNING NON SCANNING
technologies need to be developed or industrialized for automotive.
+  MEMS Scanning Micro-mirror technologies With With
« SPAD (Single Photon Avalanche Detectors) - Rx Soving parts Ll
’ 3D SPAD - RX ( ) f Optical Phase
° Smart GaN (Ga|||um nitride) | Spinning LIDAR J ‘ Array LIDAR 1 Flash LIDAR
. \ /
i {53 . B
Comparison metrics: | wrmrfngifzh"EMS} qu:‘fci:‘y’?‘t’?‘inw
. . modulator
*  Number of beams: 8,16, 32, and 64 being common sizes . .
» Points per second: The faster, the more detailed the 3D point cloud can

Source: J. Cochard et.al., “LIDAR Technologies for the Automotive Industry”, Tematsys, June 2018

be
* Rotation rate: higher rate, the faster the 3D point clouds are updated
» Detection Range: dictated by the power output of the light source
» Field of view: angular extent visible to the LIDAR sensor

Upcoming: Solid state LIDAR!



LIDAR Summary

Autonomous vehicles have been around for quite some time but only now the
technologies are available for practical implementations

No single sensor solution exists to cover all aspects — range, accuracy,
environmental conditions, color discrimination, latency etc.

* Multi-sensor fusion and integration will be a must

« Each technology attempts to solve the overall problem while having multiple limitations

Many LiDAR solutions (technologies) are available or being proposed with no
clear winners

Market is still in very early stage of development and experimentation

When and which technology or system will be widely adopted and mass
production starts is still unknown



Automotive ADAS Systems

Radar Systems




RADAR Technology Overview

RADAR (RAdio Detection and Ranging) is one necessary sensor for ADAS (Advanced Driver Assistance
System) systems for the detection and location of objects in the presence of interference; i.e., noise, clutter,

and jamming.

Robust Object Detection and Relative Speed Estimation

Transmit a radio signal toward a target, Receive the reflected signal energy from target

The radio signal can the form of “Pulsed” or “Continuous Wave”

Works in poor visibility like fog and precipitation!

Automotive radars utilize Linear FM signal, Frequency
Modulated Continuous Wave (FMCW)
* FM results in a shift between the TX and RX signals that
allows for the determination of time delay, Range and
velocity.

Signal travel
Range (R) gtlme 12

Speed of
propagation in
medium (c in air)




RADAR Technigues

+ Comparison metrics:

 Range

Pulsed Radar  Field of view

« Position and speed accuracy
Intrapulse Modulated Pulse Modulated Modulated Unmodulated

» Configurations:
« Wide-FOV: Short Range
* Narrow-FOV: Long Range

* Definitions:
— Imaging Radar: Forms a picture of the object or area
— Non-Imaging Radar: Measures scattering properties of the object or area
— Primary Radar: Transmits signals that are reflected and received
— Secondary Radar: Transponder that responds to interrogation with additional info

— Pulsed Radar: High power signals are only present for a short duration and repeated at
specific intervals

— CW Radar: Signal is present continuously
2013 Defence & Security Forurm, Eubdvy

Source: Strategy Analytics Lunch & Learn the Market Session European Microwave Week 2013



Source: Rodhe & Schwarz - Automotive radar technology, market and test requirements, White paper — Oct 2018 (Salvo S. presentation)

Automotive Radar Vs. Automation Levels

<2014 2016 2018 2019/ 2020 > 2028
Level 1 Level 2 Level 3 Level 4 Level 5
Driver Assistance Partial Automation Conditional Automation High Automation Full Automation

v

High resolution

Object detection Object detection . 3D detection 360° object recognition
target separation
2x USRR
2x SRR 4x SRR 4x SRR-MRR
2x SRR 1x LRR 1x LRR 1x LRR 4x SRR-MRR
2x LRR
Applications Applications Applications Applications Applications
BSD, LCA BSD, RCW, LCA BSD, RCW, LCA BSD, LCA, RCTA AVP, PA
ACC, AEB FCW, RCTA AEB pedestrian BSD, LCA, RCTA
ACC, AEB ACC, AEB AEB pedestrian
ACC,AEB
USRR - Ultra Short Range Radar BSD - Blind Sport Detection ACC - Adaptive Cruise Control RCTA - Rear Cross Traffic Alert
SRR - Short Range Radar LCA - Lane Change Assist AEB - Automatic Emergency Breaking AVP - Automated Valet Parking
MRR - Medium Range Radar RCW - Rear Collision Warning FCW - Forward Collision Warning PA - Parking Assist

LRR - Long Range Radar



Automotive ADAS Systems

GNSS/IMU System




GNSS/IMU Positioning

» Global Navigation Satellite Systems and
Inertial Measurement Units GNSS/IMU

* Direct measure of vehicle states

Positioning, velocity, and time (GNSS)

» Varying accuracies: Real-time Kinematic (RTK-
short base line), Precise Point Positioning (PPP),
Differential Global Positioning System (DGPS),
Satellite-based augmentation system (SBAS-
lonospheric delay correction)

Angular rotation rate (IMU)
Acceleration (IMU)
Heading (IMU, GPS)




GNSS/IMU Positioning

More Precision Enables More Safety Features

Precise Positioning: Towards Autonomous Driving

Precise Positioning to enable < 30cm precision
* Lane detection

« Positioning data for V2X sharing

» Collision avoidance

* Autonomous parking

« Autonomous driving

« eCall accident location




Precise GNSS 1s a Critical ADAS Sensor

Higher integrity requirements across safety-critical applications

« Semi- and Autonomous driving safety-related

applications requirements increase
« Higher safety levels

« Added redundancy

« More Robustness & integrity

« Security

Teseo APP (ASIL Precise Positioning) GNSS receiver,
new sensor based on 1S026262 concept with unique

Absolute and Safe positioning information

complementing relative positioning other sensor

inputs(i.e. LIDAR, RADAR, etc.)

Teseo

g:d  ST's GNSS Receiver Family
¥ forADAS and AD

-

Safety critical levels of protection

HPL — Horizontal Protection Level
VPL — Vertical Protection Level

Bad Solution
Detected

SAFE FAILURE

. y

VPL

Good Solution
Confirmed

SAFE i . V

OPERATION
OPERATION

.._x Bad Solution

"~ Declared Good

llllllll

Courtesy of Hexagon Pl



Precise GNSS Is a Critical ADAS Sensor

GNSS Accuracy in Automotive Environment (using PPP — Precise Point Positioning)

Horizontal Position Error Horizontal Position Error CDF
_ 3.0 10 F=r——————————————————— =
Single Frequency —— Teseo APP Alone ' ]
(i.e. L1) multi- - —— Teseo APP with Pl SWPE
constellation/code- : 0.8 - ﬂ
phase(1msec '
modulation signal) 2.0
T 2 0.6 J
= 15 2
g g 0.4 4
w E !
1.0 ~
Multi Frequency (i.e.
L1, L2) multi- 0.2 1
constellation/carrier- %2 — Teseo APP Alone
0-0 I 1 I I I 1 1 0.0 ! I I ____l_____l_____T _____
0 500 1000 1500 2000 2500 3000 3500 0.0 0.5 1.0 15 2.0 2.5 3.0
APP: ASIL Precise Positioning Time (s) Error/PL (m)

SWPE: Software Positioning Engine



Precise GNSS Is a Critical ADAS Sensor

GNSS Integrity — Protection Levels

Horizontal Position Error and Protection Level Horizontal Position Error and PL CDF
1.0 -
1.4 1 - P| SWPE Error
— P| SWPE Protection Level
0.8
T 206
~ 2
| .
[{y]
g S 0.4
18] E E
0.4 1
0.2 -
0.2 m - PI SWPE Error
- P| SWPE Protection Level
00 T T T T T T T 001_L T T I____I____l____T____I_-
0 500 1000 1500 2000 2500 3000 3500 00 02 04 06 08 10 12 14

Time (s) Error/PL (m)
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V2X System




Venhicle-to-Everything (V2X)

Va2X

V2M
Vehicle-to-

V2D V2P
Vehicle-to- Vehicle-to-
Device/object Pedestrian

V2V \pd|
Vehicle-to- Vehicle-to-
Vehicle Infrastructure

Motorcycle




EIRP [dBm] (not to scale)

FCC Spectrum Allocation for DSRC of [TS
sy | B Govtony
use Limit
33.0 5 o
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, © B Channel 175 - 5 « Channel 181 . =
230 N G g T+ L9 @ 2 8 'oogwé gé
0.00 — 5 Zo2% L2 E 8 2 E 8 Z‘Egca ©aoO© ®o0© 23ZL
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| | | |
5.845 5.850 5.855 5.865 5.875 5.885 5.895 5.905 5.915 5.925

BSM (V2V)

MAP Message (V2I)

SPAT (V2I)

TX Power +20dBm

EIRP: Effective Isotropic Radiated Power
ITS: Intelligent Transportation Systems

Frequenc [GHZ]

Control Channel, Advertises
and indicates how to access
services on other “Service
channels”

Source: Federal Communications Commission FCC 03-324

Road authorities and
public agencies
primarily responsible
for usage



DSRC

* Wireless Access in Vehicular Environments

(WAVE) (s
B “él « Amendment to IEEE 802.11-2012 to support WAVE/DSRC | Frd W
¢ * no authentication, no access point/no association Oy "

+ 5.8 - 5.9 GHz OFDM &

* Broadcasts BSMs 10 times per second

v « Transmit power are about 100mW (20dBm
SE R3S ETRE A @Antenna Port - Per IEEE802.11-D.2.2
B Transmit power level) with a nominal range of
300m (360° coverage)

« DSRC units share the same channel

Fast Network Acquisition & low
latency (<50msec)

Priority for Safety Applications
Interoperability

Security and Privacy (ensured through |
a root certification system)




C-V2X Basics
» C-V2Xis a V2X radio layer:
« C-V2X is Device-to-Device (D2D) communication peayice-to-Device Communication

service added to the LTE Public Safety ProSe
(Proximity Services) Services g
V2l \VEI

« C-V2X makes use of the D2D interface — PC5
(aka Side Link) for direct Vehicle-to-Everything | n—— 8
communication N
. C-V2X takes the place of DSRC radio layer in \
relevant regions

e V2V, V2l and V2P V2X - Vehicle to Everything

DSRC/
C-VaX (PCs)




C-V2X Basics
* C-V2X Transmission Mode 4:

 Mode 4 — Stand alone, distributed
« Uses GNSS for location and time for synchronization

Transmission Mode 4

(‘)




C-V2X Basics

* Transmission Mode 4:

* Out of Coverage operation: The transmitting
vehicle is not connected to the network

* No SIM card or inter-operator collaboration is ”E

Transmission Mode 4

<

required

« Each vehicle performs its own scheduling and
allocation

* No dependency on inter-vehicle components "’ v
(eNB, Allocation Server etc...)

 Mandatory for SAE, ETSI

K
PC 5.»
A

PC5 PC5




C-V2X Alr Interface

* C-V2Xis based on LTE (4G) uplink transmission - SC-
FDMA (Single
Carrier Frequency Division Multiple Access) signal:

* Asingle carrier multiple access technique which has similar
structure and performance to OFDMA

 Utilizes single carrier modulation and orthogonal frequency
multiplexing using DF T-spreading in the transmitter and frequency
domain equalization in the receiver

« Asalient advantage of SC-FDMA over OFDM/OFDMA is low Peak-
to- Average Power Ratio (PAPR). Enables efficient transmitter and
improved link budget



N Summary

Both Technologies will do the JOB!
But:

* Industry is waiting for regulatory certainty, Government
Mandate is preferred!

» C-V2X has to reach automotive production maturity

* Implementation and deployment will depend on OEM system
architecture

* The market will demand standalone V2X module for OEMs
and aftermarket because V2X is a safety critical sensor.




Automotive ADAS Systems

Sensor Fusion Example




Multi-sensor Fusion for State Estimation

EXtendEd Kalman FI Iter | This is a rule based fusion example,
| M U . G NSS 4+ Ll DAR we will see another fusion later
If GNSS/LIDAR available
IMU Only

Y

Predicted
—| Motion Model —» ' y
State x,
High rate I

Position
Observation

Corrected

State X,

BN Kalman Fusion

Low rate |

Source: “State Estimation and Localization for Self-Driving Cars”, Coursera by University of Toronto



PART II: Reducing Human
Efforts in Visual Perception




Carrier Heavy Truck

Largest Autonomous Driving in logistic Preliminary Exploration

1D 200+ cities @ 50+ routes across China [ﬁ Built 20+ Auto-Truck
A -
I;I@ 800+ Autovehicle Elg 30+ test vehicles @ Cainiao, Shentong

¥ BS0M+ orders & 100M +km test milage Oc Release in 2027 |




“© Autonomous Driving Vehicle Is Also A Robot

Autonomous Driving
Understand and Act in 3D World

Heavy Truck Carrier

ol



© Common Framework of Robotic System

Robot!

Pe_t‘“ce_p'ticm

Understand the 3D world Planning Decide what to do Control in realistic space
Data creation Interact with the world

o2



'Q My Research Focus: Perception + Imagination

My Research Focus

F‘e_r:e.p’tiﬂn

Understand the 3D world

Im?ina'tinn

Planning
Data creation

f_,—{ Decision

Decide what to do

—%Iﬁ Control

Control in realistic space
Interact with the world

o3



'Q My Talk Focus: Perception

My Talk Focus

F‘e_r:e.p’tinn

Understand the 3D world

S (R —

\/

Im?ina'tinn

Planning
Data creation

Robot

——,—}{ Decision

Decide what to do

—%[ Control

Control in realistic space
Interact with the world

o4



®© What is Visual Perception?

Sensors

Sparse PCDs

Depth Cam.

Dense PCDs

SB)



'Q Visual Perception in 3D

Sensors

B |

1

Film

Records the image that
passes through the lens

RGB Cam. -

Sparse PCDs

59
!,‘

Depth Cam. Dense PCDs

Per‘ceptiov\

Al Models

Imagina‘tion

‘>‘ Decision

Control




“© Convolutional neural network

Convolutional Neural Networks

]
Usi /-”’f
——

i =

N

Us2

\
\e B\




“© Convolutional neural network

Convolution is template matching ...

* with a sliding window

* abstract templates

* similarity measured by dot product
e stronger activation, better matching




© Supervised Learning in Visual Perception

B

Architecture
Dﬁ&?gn

— | Architecture
[ Task J Expert — [ ]

Manual Design Architectures

=

Data
Annotation

v

L J i [ e J
Worker

Large-scale Annotation

o9



'Q What are Key Challenges in Supervised Visual Perception?

Lal:»e,l _
20+

Acchitectures
n one pr‘oduc‘t?

More
Products?

1. Large Efforts in Architecture Design 2. Large Efforts in Data Annotation
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®© Heavy Human Efforts in Visual Perception

lion

Heavy Efforts Hinder
Large-Scale Deployment!
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© Reducing Human Efforts in Visual Perception

AutoML

EvalNAS, ICLR 20
LR, CVPR 21
SuperNet, TPAMI 22

Address Challenge 1: Large Efforts in Architecture Design
- Identifying why NAS cannot surpass random search
- Our Landmark Regularization solution to address

We will not cover it in this lecture
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© Reducing Human Efforts in Visual Perception

AutoML # . Perception
_ J

BEVFusion, NeurlPS 22
BEVHeight, CVPR 23
Rec.UNet, ICCV 19
SMSOP, ECCV 18

Address Key Challenge 2: Large Efforts in Data Annotation
- Auto-Labeling and pseudo labels to save human efforts
- High-performance and robust 3D perception framework



“© Reducing Human Efforts in Visual Perception

AutoML

r%.

Address Key Challenges 1 & 2:

Pel‘cep‘tion

Address both challenges together

A platform to integrate our latest research advances

) AutoML AL F’e,t‘ce_p‘tion
C ; St/S'te_m
Al System

- Role: Chief Architect

- Broader AutoML

- Deployed in Alibaba

xzoqg_;,xl )

Before

AutoML System V1
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Key Challenge 1: Large Efforts in Architecture Design
Key Challenge 2: Large Efforts in Data Annotation

Perception In
3D World

AutoML u! B Perc eption AUtDMLéI :erception
| =hem

Here




'Q Perception in 3D Understanding

Sensor Data > G > Vectorized space
Camera LiDAR Radar etc. 3D digital world

Perception

- Brain of robotics
- Similar to human

- The only approach to
understand the world!

- Data centric
- Deep Neural Networks
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“© 3D Understanding Tasks

G

Perception

Multi-object
Tracking

Point-cloud
Segmentation

Object
Detection

Depth
Completion
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“© Why 3D Annotation with Multi-sensor Data Is Hard?

Red: GroundTruth

Example of 2D Object Box Annotation
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“© Why 3D Annotation With Multi-sensor Data Is Hard?

Red: GroundTruth
Blue: Common annotator

i %
-

A )

Example of 3D Object Box Annotation
(Bird eye view of 3D point clouds)
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“© Why 3D Annotation With Multi-sensor Data Is Hard?

Red: GroundTruth
Blue: Common annotator

Example of 3D Object Box Annotation
(Bird eye view of 3D point clouds)
Aggregating 100+ frames!
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“© Autolabel System: Large model as Pseudo Labeler

LDAR Point Clouds Multi Frame

3D Ol::‘e_ct
Detection
Large Model

Multi-view Multi Frame Images
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“© Autolabel System: Large Model as Pseudo Labeler

LDAR Point Clouds Multi Frame

H?gh Quah’ttl 3D Bouno(ing box

AT
€ 3 g
3D Object
Detection = W —
Large Model \y@\ ) qnﬁ,?ﬂ “’( 7,
. L O i 4
A ) é" I
N
%\

Auto Labeled 3D Box

Multi-view Multi Frame Images
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“© Autolabel System: Large Model as Pseudo Labeler

LDAR Point Clouds Multi Frame

H?gh Quali‘ttl 3D Bouno(ing box

e
: Object m
Detection 4 e —_—
Large Model ?ﬁéfﬁ? "::\:": y :::i;
.-l I ™
N
%\

Auto Labeled 2D Box

Camera
ﬁ% Parameters w

Auto Labeled 3D Box

Multi-view Multi Frame Images
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“© Autolabel System: Large Model as Pseudo Labeler

LDAR Point Clouds Multi Frame

v wﬂhi‘w' "
\ e '
" Mgttt v
3 " — ¢ v
i » . f‘
N

Multi-view Multi Frame Images

et

H?gh Quali‘ttl 3D Bouno(mg box

3D O(:Je_c‘t
Detection
Large Model

E {"Ex

Auto Labeled 3D Box

|

Troack

al

Camera

Model

rameters w

-

“

Auto Labeled 2D Box

w

‘\e,,,.w"‘ ').
4 . 5 M’
S

s

3

Trocked Ol::‘ec'ts
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“© Autolabel System: Large Model as Pseudo Labeler

3D Ob3ect
Detection

% Lar‘ge Model

Better
Base Model

Reduce
Human Efforts
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®© State of The Art Multi-modality Base Model

z

Existing Frameworks of camera-lidar fusion

* Fusion starts from point clouds, what if LIDAR fails?

[1] Yu et al. Robustness benchmark of camera-lidar fusion in autonomous driving. CVPR’23 Dataset Paper
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“© SoTA Base Model Fails w/o LiDAR Input

% % = re
i s E
% -1.—" i &
F RN 3 A
i) -
'.'l:‘s‘ # . P
- ® § . b 3 Fas -
- b »
. % o B I Ol A%
L i i \!i" . . .
o €' Visible in Camera
- ol i e
B’ b RIS In

Ground-truth

Predictions

* Base model with 2 modalities should not fail when 1 missing

[1] Yu et al. Robustness benchmark of camera-lidar fusion in autonomous driving. CVPR’23 Dataset Paper
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“© BEVFusion: A Simple yet Robust Base Model Framework

iy /& r BT

Existing Frameworks of camera-lidar fusion

[1] Liang et al. BEVFusion: A simple yet robust framework for camera-lidar fusion in 3D detection. NeurlPS'22, Spotlight, Supervised intern. 2



“© Our BEVFusion Framework is Robust to LiDAR Failure

Predictions Ground-truth
“ad HE
oy LRE R Accurate
& B e Prediction

The first robust framework that is agnostic to LIDAR failure
+30 mAP compared to baselines

Become a de-facto standard

Many follow ups (MetaBEV, BEVFusion 4D, etc.)

[1] Liang et al. BEVFusion: A simple yet robust framework for camera-lidar fusion in 3D detection. NeurlPS'22, Spotlight, Supervised intern. 2



“© BEVFusion Deployed in Alibaba

- ;AN
= e
b Al
High- @ Y s,
((;Qualltcyj/ ‘I.I. Au:ol
rouna- Labeler Arwmy Lase
truth
Accuracy (mloU) 83.12 91.35 (8.23+)
Time (per box) 25s 0.005s 1250’[00;
aster
Cost (per box) 1 RMB 0.0001 RMB (10000
X

* BEVFusion + Autolabel system surpasses human level annotatiof1eaper)
* By alarge margin

[1] Liang et al. BEVFusion: A simple yet robust framework for camera-lidar fusion in 3D detection. NeurlPS’22, Spotlight, Supervised intern.
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“© BEVFusion Other Impact

Lidar Al Solution Y% star 578

This is a highly optimized solution for self-driving 3D-lidar repository. It does a great job of speeding up sparse

convolution/CenterPoint/BEVFusion/OSD/Conversion.

cosoore

-

NETWORKS

LIBRARIES
CUDA & TensorRT solution for BEVFusion inference, including:

» Lidar Encoder: Tiny Lidar-Backbone inference independent of TensorRT and onnx export solution.

= Camera Encoder: ResNet50 and finetuned BEV pooling with TensorRT and onnx export solution.
N FP1 & e ‘,

p, + Feature Fusion: Camera & Lidar feature fuser with TensorRT and onnx export solution.

EIEE b

+ PTQ: Quantization solutions for mmdet3d/spcony, Easy to understand.

= Pre/Postprocess: Interval precomputing, lidar voxelization, feature decoder with CUDA kernels.
= Easy To Use: Preparation, inference, evaluation all in one to reproduce torch Impl accuracy.

Preprocess Inference(GPU+DLA)

L]

int8 “
Raw scans - p16%"
e m PTQ/QAT Teajeciory Preciction Task
30 Sparse Conv

Nvidia Integration as a default Al solution

BEV Map Task
bevpool &
Image Backbone Detection Task
-
- - Cr

Visualize

nuScenes detection task

Leaderboard nuScenes tracking task

| Leaderboard

L

,
e —a — |

CAMG-MOT

BEVFUsion

2 MSMDFusion-ba

5 FocalFormerdD-F ¢

3omaTrormer-B8Y ©

TransFusion

» oo weuonsma

10525 comeponiiusend ) FocalFormerd " o na Q75 0S4 DR 06N 0309 0750 VOB s 1550 5165

| > 022 voxalNekt Lidar v oo 511 0785 0600 0308 0765

Leading in various tracks of leaderboard

= 1848 Q2 NIO

R W

HAOMO.AI ALIBABA DAMO ACADEMY % H UAWEI

Integration by various AV companies
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AutoML

Al System

ADLab AutoML System

o Perception

1

AutoMLAL Perception
St/ste_m

Key Challenge 1: Large Efforts in Architecture Design

Key Challenge 2: Large Efforts in Data Annotation

L\ 3
Cilons | BAK



'Q Reducing human efforts by building an Al System

* Automatic machine learning as a system
* My Role: Chief architect

Tuming research nto pr*ooluctiv?'ty.’

AutoML

[ Human OP ]—%[ AutoML OP j

=)

L'a !

Perception

AutoML
Percep‘tion

Br?dge, tThe gAp between

academic research and Indus'tm/.
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© Manual update of an existing deep learning model

h - Z
L.e_ge.nds ( -t":‘;t‘l:‘)o'; j [ Data J [ Automatic ]

[ Evaluation ] AL

>[ Deploy j

*’/ * All steps are manually done
* Cost 90 days for 1 model
E:“"We A"“"/S‘sj « Update an existing model

¢ * Does not include first design time

[ Bata ]
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'Q Step 1. Automatic deployment

i ‘
Legends ( _t‘:';i‘ao'; j [ Dota J [ Automatic ]

Automate
( Evaluation J {:},\[ De_ploy J

|
\
| v
|
[ Modlel j (Fodlut‘e_ Analysis
’rr‘o\ining

* Automation for API services

* Across 6 platforms from hard-ware deployed
* Save ~30 days
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© Step 2: Use active learning for data mixture process

h - Z
Legends ( -t‘:';t‘l’:)o'; j [ Data J [ Automatic ]

(Eleuo:tionj :/[ Deploy J
¢ @

|
Model j [F'ailure Analysis
Training

Autdmate
Lipe_lov\é 'Ij \ ‘

Dota =
[ Mixture ] =

Automatic data mixture

Lifelong learning to train the network

Save ~5 days

Without performance drop

|

N
y
3

L NN

36



'Q Step 3: Incorporate NAS into AutoML System

i ‘
Legends ( _t‘:';‘i‘ao'; j [ Dota J [: Automatic ]

AutoML
NAS
Algor‘?’thm
Ewmbedded

Automate

; ™
Evaluation s %\( Depl j
[ / ] L T“’

I

[

|

|

: /P \\\\.f’/
| \ '

: || [Fo&lure A'\OJYSISJ
' |

* Incorporate NAS in 3D backbone
* Support quantization

* Save ~20 days

* Performance Improves ~10%
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Overview of the system

M ining & Annotat

L o B =

Acti
ctve Selection  Visualization Annotation Auto-Label

r
-

Leaming

Dataset

O G O (X 57 & [

Orgainzing Process hference Dataset
Storage hdexing Labeling

ADLAB
AutoM L
System

Data Collection

M odelTraining

s,
82 B 2 O A ¥ [*%
hA .
46 D rive ) Training et ; Ass?t
Upbad Copy Trigger W ith NAS Quantization Evaliation

Continuous htegra

AT ¥ 2o

Compik TorchScript PropctC.I  Sim Test RealTest 0TA



“© Overview of the system

M ining & Annotation

L& e B

Acti
ctve Selection  Visualization Annotation Auto-Label

Leaming
I—
-

Performance
* +10% mAP on object detection
* +5% mloU on point-cloud A B O
segmentation Some hdsshg  Labaing PR Peessmieee paer
« Fix 150+ failures automatically ADLAB

Efficiency Systen
« Time spent: 90 - 35 (-
60%) s
 Manual steps: 192 > 7
(-97%)

Dataset

Data Preprocess

o
{z}
S
&
»

Data Collection

&

Continuous htegration & O TA

A RO R R W

Compik TorchScript PropctC.I  Sim Test RealTest 0OTA
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‘Q Outcome: Deployment of AutoML System V1
———=| Decision |

Carrier

Largest Autonomous Driving in logistic

800+

0%

\J

200+

Cities
Vehicles

‘ders

X 20

Before

Peﬁcep‘tion :

|
v

Ad X1

Imagina‘t?on

AutoML System V1

Control
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Future Work
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‘0 Review of the Development of Multimodal Large Language Models

L.omge_ Model as Sys‘te_m 1 v.s. Af,e_n‘t Sys‘l:e_m as Sc/s‘te,m 7

K System 1 System 2 \
© —i

_j Fast 24 Slow

[ 7-11 S o8 | oo Pz
%_g} Unconscious 7@\_@? Conscious
O v

Eé)g Automatic @ Effortful

Everyday {5t > Complex

o o Decisions I Decisions

E Reliabl
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© How MLLM interacts with the society: Our lab’s approach

Autonomous In‘te,“?ire_nce, Lab
AL Slfs‘te,m Focus

Multi-
moo!al?by
\ LM

/l.

| Moole_l I




© How MLLM interacts with the society: Our lab’s approach

Autonomous In‘te_“ige_nce, Lob
AL Slfs‘be,m Focus




© How MLLM interacts with the society: Our lab’s approach

Autonomous In‘te,“ige_nce, Lob
AL Sys‘te,m Focus

~

/

\
[ AL Agent System | ( Perception J
| |
l I/0 ] !
| | r~
] ( I Mul‘ti- IMGLJ
: \—JMQMDPY :é_ moo!a\h'ty < 2
I [ CPU h | FUSIDH r Pl i \
: / ' \ anning /
| |
I ( Control / ! , ~
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'Q How MLLM interacts with the society: Our lab’s approach

Autonomous In‘l’.’.e_“?::,e,nc_e, Lab
AT Sys‘te_m Focus

( Multi- [\ ________________ -
modal‘ty || Em(::oolie_d / Au‘tonomous I)ﬁVmsr

Fusion }- ---------------- i

Surv Fan : -
y - t L atior orm0 |,
B =l & e
© | New Data A
Fooar Clowdy | — .
ﬂ n ; i
‘ I nnnnnnnnnnnnnnnnn |
i Error Tor
S M h ] Detphi Fail D n Framework 1 i
— T Classfy '  Classity
Diverse A
| captions = AN
%7 \ Retrieving Similar Scenes \* ™
\ Occlus
= S N W - M- e 2
ne’ 1 ata” . N
Gaption Ll T Sat igarby
ullctﬂl: bﬂrv'dl:n)ll.fn e road in “FRONT"
roximately 10 meters ahead -driving
the vehicle's \:lwred line of electric T
ince: intersects with the trajectory driving

BEVFusion

Closed-loop Data Engine to self-correct



“© Challenge: Lack of Sufficient 3D Data

NLP Knowledge

y / )//

Online Text

Human L.omguo«ge,

éﬂumo‘n K nou/le_olge_

Solution: get more data!
Annotated

Capture,ol l:»t/ sensors
World in 4D
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‘Q Challenge: Perception Inevitably Fails when Lacking 3D Data
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© Work in Progress: Imagination via 3D Data Generation

Imagina‘bion Long way to ¢o
DO\'tO\ 3!/"\'“’\@,5‘5 ------------3---:/-----3--------------->
LDAR Sim.  LiDAR simulation via implicit rendering
UDAR | | camera
Sim. Sim. * LIDAR + Camera in one NeRF

A

Sim Moo!e,l’ * Synt. Data -> Self-correct -> AD Perform.

N_ "
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© Work in Progress: Imagination via 3D Data Generation

Imagina‘bion Long way to ¢o
Data synthesis ____________ff____Y____?__-____________)

A

Sim Moo!e,l’ « Synt. Data -> Self-correct -> AD Perform.

N_"
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“© MLLM in Real world: A World Model Approach

I\

eeeee mﬁoz i.g i World Model

LiDAR Control HD Map Prompt L

] B s

World Model in Autonomous Driving Generated scene



“© Delphi: AD multi-view video generation model

| Projection box's coordinates * (\ enable Modul
A —> box's heading > —_— rainable Module
- % R box's instance id E
box's dense caption . :{e{: Frozen Module
Layout Embedding
BEV Layout Camera Layout
* .. "The environment suggests an overcast day, T5 >
Image Captioning —» potentially early as the light seems soft and ... " »

Text Embedding

T Scene Dense Caption

AControlNet
Noise Reinitialization

° )
£ share n|e =] [2
= @ < % |z
] o < L
o g | e
© wn o
7
DiT (N x Blocks)
Rich multi-modal Noise Sharing Multi-view space-

3

control information modeling time interaction



‘Q Long sequence generated results




'Q A data engine to self-correct autonomous driving system

~&— Random Sampling with Panacea A Lyt
0421 _@- Random Sampling with Delphi A~
& & 0.40 —&- Failure-case Driven Sampling with Delphi >
generate ' —— Failure-case Driven Sampling with Panacea /,/"
Delphi New Data 035 -l Baseline(no additional data) > ol
. ,/"/
analyze train ¢ Avg. 036 'G/
& & | Col.(%) 0.35 _alV
: End-to-End | a8 ———
Failure cases «33’ 0.33
evaluate model -
0.30 -
0.28 4 25% decrease in collision rate
wnth only 4% additional data.
5000 10000 15000 20000 25000

Number of cases



'Q How MLLM interacts with the society: Our lab’s approach

Autonomous In‘te,“ige_nce, Lob
AL Sys‘te,m Focus

~

/
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| AL Agent System | ( Perception J
| |
! /0 ] !
| | @
I r I Multi- Imacination '
' \—JMQMDPV :é_ moo!aul?ty < 2
|

), Fusion r /)
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‘Q LLM: Fail to ‘really’ logical thinking in multi-modal

D
Ol w/

Task

|

what the shape be like after
cutting / rotating / stacking ...

[ OurlInf-Bench |

R =
AW AW

original shape current shape

At

open-source VLM
[} proprietary VLM

[} reasoning VLM

2, human

&

= sSuperman

J |

what the operations of turning the original
shape into the current shape

] 0.25

0.29

L]

2.08

6.01

e




© LLM + Structure Representation: A New Renaissance

PST

®
@ )
God> W ()
Gaw) Ge) (W)
ONZ

FOL) [ ax(Dog(x) A Saw(John, x)) ]

-
Abstract j
Complexj

(b / blunder-01

:arg0 (s / Syria)
:arg1 (c / costly)
:time (f / four)

LLM

Prompt

:quant (s2 / second))

' Task Instruction: ...

-

I

~

nput: (text) John saw a dog.

A

. A

+ &

(a) Previous Method



© Structure Info Enhance the Reasoning
(b) Our SR-LLM (training-free)

AMR
Transfer Prompt +3.17
Concreteb] r
[AMR-NLD|  iciigibie | Task Instruction: ...
"One person saw something." ,;: ( ) Joh 4 ) IEI
" : " Directl nput: (text) John saw a dogq. -
His name is John.", y P 9
_ + (AMR-NLD) v | PAWS

"The object he saw was a dog." N A J (F1)

(c) Our SR-LLM (training-dependent)

Prompt

Task Instruction: ...

-~

.

Input: (text) John saw a dog.
+(AMR) AMR

~

B e e e e e e e e L L

_______________________________________ + 12.38

LLM | S|P
IEI a [Task Instruction ] D
SFT D ‘

. PAWS

(F1)



‘Q Future: Combine the knowledge for science discovery
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© Why Autonomous Intelligence?
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'Q From Autonomous Driving to Al Agent

Abstracting Agents & Environments with
Higher-Order ToM

2nd-order ToM

Beliefs +
Intentions

@)

Dynamic Environment 1st-order ToM

Beliefs
Intentions

47
F N

o " Proposed
Improvement

Current
Limitation

.......... 7
Multiple Ilgnoring others’ :?’e"ef T”;‘Ck'“g
Agents Interaction inner reasoning fenrnncicnes
& Game-Theoretic Strategy

Enhanced Decision-Making & Complex Scenario Handling
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