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Large AI Model Changes The World

Google Trends of ChatGPT

1. Statistica.com, https://www.statista.com/statistics/1366930/chatgpt-google-search-weekly-worldwide/, accessed on May 26th

2. Twitter Watcher.Guru, https://watcher.guru/news/how-long-did-it-take-chatgpt-to-reach-1-million-users, accessed on May 31th 

ChatGPT is the fastest app reaches 1M Users
Only has 1 feature, Chat with GPT
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Large AI Model Will Change The World Virtually

Alibaba - Tongyi

User Large AI Models
Computer (Desktop or Mobile) 

Baidu

Google Bard
Claude

Closed Sourced Open Sourced

VicunaChatGPT + Bing

AutoGPTGenerative Agents
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How does AI Model interact with physical world?

User Large AI Models
Computer (Desktop or Mobile) 

Physical 
World
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How does AI Model interact with physical world?

User Large AI Models
Computer (Desktop or Mobile) 

Physical 
World

Large AI ModelsRobot! Brain
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Autonomous Driving Vehicle Is Also A Robot

Understand the 3D world Planning orienated
Data creation

Decide what to do Control in realistic space
Interact with the world

Autonomous Driving
Understand and Act in 3D World

Bus Taxi

CarrierHeavy Truck
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Large-scale deployment of AV across China

50M+ orders

Carrier
Largest Autonomous Driving in logistic

200+ Cities

800+  AutoVehicle

Heavy Truck
Preliminary Exploration

Built 20+ Auto-Truck

Cainiao, Shentong

Release in 2027

Truck
Research -> Product

100M+km test milage

50+ routes across China

30+ test vehicles

Cus-
tome

r

Shop Warehous

e

Carrier Truck Heavy Truck

Cus-
tome

r

ShopWarehous

e

CarrierTruck
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PART I: General introduction of 
Autonomous Driving System 
(ADS)

Source: STDevCon19_7.5_Overview of ADAS-Active-Safety



Automotive ADAS Systems

Overall Automotive ADAS System
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Automotive ADAS Systems

ADAS Overview



Overview of ADAS Technologies

Power 

Supply/Management

Targets




ADAS Sensors - Needed for Perception

LIDAR

Radar

Cameras GNSS antenna

Ultra-Sonics

Central Computer 

Wheel Odometry



The 5 Levels of Vehicle Automation

2
Partial 

Automation 

(Level 2)

Driver monitors 

system at all 

times

4
High 

Automation 

(Level 4)

Driver is not 

required for 

specific use 

cases

Learning to Drive
• Systems Networking

• Sensor Fusion
• Distance Measurement

• Traffic Sign Recognition
• Lane Reconstruction
• Free-path Definition

• Precise Positioning
• Real-time Mapping

• Driving Rules 
Implementation

• Critical Arbitration

Adding Senses

• Accelerometers and Gyro

• Steering WheelAngle
• Ultrasonic sensors

• Front Radar Sensor
• Blind Spot sensor
• Rear View Cameras

• Front View Cameras
• Surround View Cameras

0
No Automation 

(Level 0)

Driver in control

5
Full 

Automation 

(Level 5)

No Driver 

Required

1
Driver Assistance 

(Level 1)

Driver in control

3
Conditional 

Automation 

(Level 3)

Driver needed to 

be able to resume 

control

Levels 0-2 Human driver monitors the driving 

environment

Levels 3-5 Automated driving “system” monitors 

the driving environment

Source: SAE standard J3016



Sensor Fusion is Key to Autonomous

Source: Woodside Capital Partners (WCP), “Beyond the Headlights: ADAS and Autonomous Sensing”, September 2016



Automotive ADAS Systems

ADAS Vehicle Architectures



Distributed vs Centralized Processing

• Distributed Interfaces

• ETH, SPI, I2C, CAN, CAN-FD

• RADAR, Ultrasonic, V2X, IMU, Wheel Odomerty, GNSS

• MIPI(CSI-2), GMSL(Maxim), FPD-Link(TI), PCIe, HDBaseT(Valens)

• Video Cameras?

• Lidar?

Ultrasonic

Lidar

Radar

Camera

V2X
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ä   Acceleration &

ṽ Speed
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Late Sensor Fusion

Distributed Processing with Object Level Fusion Centralized Processing with Raw Data Fusion

LOS: Line-of-Sight

NLOS: Non-Line-of-Sight

• Centralized Interfaces

• ETH, SPI, I2C, CAN, CAN-FD

• V2X, IMU, Wheel Odomerty, GNSS

• MIPI(CSI-2), GMSL(Maxim), FPD-Link(TI), PCIe, HDBaseT(Valens)

• Radar, Ultrasonic

• Cameras

• Lidar?
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Distributed vs Centralized Processing

Source: 2018 IHS Markit – “Autonomous Driving-The Changes to come”

Source: ADI

• What are the Data rates requirements for each sensor?

• Centralized (i.e. SERDES?) vs Distributed (i.e. ETH?)

• Example: 4-5 Corner Radars are utilized in high end/premium vehicles.



Automotive ADAS Systems

Vision (Cameras) System



Camera
• Essential for correctly perceiving environment

• Richest source of raw data about the scene - only 

sensor that can reflect the true complexity of the 

scene.

• The lowest cost sensor as of today

• Comparison metrics:

• Resolution

• Field of view (FOV)

• Dynamic range

• Trade-off between resolution and FOV?



Camera-Stereo
• Enables depth estimation from image data

Left and right images

Find a point in 3D by triangulation!

Source: Sanja Fidler, CSC420: Intro to Image Understanding

All points on projective line to P map to p

One camera

Add a 

second 

camera



The Next Phase for Vision Technology

• From sensing to comprehensive perception

• Machine learning used already for object sensing

• Autonomous driving needs

• Path planning based on holistic cues

• Dynamic following of the drivable area

• Deep learning is now being applied

150°

30°

1

50°
2

3



Machine Vision: ST & Mobileye

• Detection of driving lanes

• Recognition of traffic signs

• Detection of pedestrians and cyclists

• Seeing obstacles how the human eye sees 

them

• Adapting cruise speed

• Emergency braking when car ahead slows 

suddenly

EyeQ3 3rd Generation vision processor EyeQ4 4th Generation enables

• Detection of more objects, more precisely

• More features required for automated driving 

Free-space Estimation, Road Profile 

Reconstruction

• Monitoring of environmental elements (fog, ice,

rain) and their safety impact

• Detailed understanding of the road conditions 

allowing automatic suspension and steering 

adjustment

• Highly automated vehicles

Partnership

EyeQ5TM

The Road to Full Autonomous Driving: Mobileye and ST to Develop EyeQ®5 

SoC targeting Sensor Fusion Central Computer for Autonomous Vehicles
EyeQ5



LiDAR Technology Overview

distance

Photon

Measured 
distance

=
Speed of 

light
x

Photon travel
time /2

Emitter

Receiver

• LiDAR (light detecting and ranging, or “light radar”) sensors send 

one or more laser beams at a high frequency and use the Time-of-

Flight principle to measure distances. LiDAR capture a high-

resolution point cloud of the environment.

• Can be used for object detection, as well as mapping an

environment
• Detailed 3D scene geometry from LIDAR point cloud

• LiDAR uses the same principal as ToF sensor, 

but at much longer distances, minimum 75M for 
“near field” and 150-200M for “far field”.

Targets

2 µsec
2-10 nsec



Automotive ADAS Systems

LiDAR System



LiDAR Techniques
• There are multiple techniques currently under evaluation for LiDAR 

including rotating assembly, rotating mirrors, Flash (single Tx 

source, array Rx), scanning MEMS micro-mirrors, optical phased 

array.

• From a transmitter/receiver (Tx/Rx) perspective the following 

technologies need to be developed or industrialized for automotive.
• MEMS Scanning Micro-mirror technologies

• SPAD (Single PhotonAvalanche Detectors) - Rx
• 3D SPAD - Rx

• Smart GaN (Gallium nitride)

• Comparison metrics:
• Number of beams: 8,16, 32, and 64 being common sizes

• Points per second: The faster, the more detailed the 3D point cloud can 

be
• Rotation rate: higher rate, the faster the 3D point clouds are updated
• Detection Range: dictated by the power output of the light source

• Field of view: angular extent visible to the LIDAR sensor

Upcoming: Solid state LIDAR!



LiDAR Summary
• Autonomous vehicles have been around for quite some time but only now the

technologies are available for practical implementations

• No single sensor solution exists to cover all aspects – range, accuracy, 

environmental conditions, color discrimination, latency etc.

• Multi-sensor fusion and integration will be a must

• Each technology attempts to solve the overall problem while having multiple limitations

• Many LiDAR solutions (technologies) are available or being proposed with no 

clear winners

• Market is still in very early stage of development and experimentation

• When and which technology or system will be widely adopted and mass 

production starts is still unknown



Automotive ADAS Systems

Radar Systems



RADAR Technology Overview
• RADAR (RAdio Detection and Ranging) is one necessary sensor for ADAS (Advanced Driver Assistance 

System) systems for the detection and location of objects in the presence of interference; i.e., noise, clutter, 

and jamming.

• Robust Object Detection and Relative Speed Estimation

• Transmit a radio signal toward a target, Receive the reflected signal energy from target

• The radio signal can the form of “Pulsed” or “Continuous Wave”

• Works in poor visibility like fog and precipitation!

• Automotive radars utilize Linear FM signal, Frequency 

Modulated Continuous Wave (FMCW)
• FM results in a shift between the TX and RX signals that 

allows for the determination of time delay, Range and 

velocity.

distance

Range (R) =
Speed of 

propagation in 

medium (c in air)

xSignal travel
time /2

Targets



Gt

Ar



RADAR Techniques

Source: Strategy Analytics Lunch & Learn the Market Session European Microwave Week 2013

• Comparison metrics:
• Range

• Field of view

• Position and speed accuracy

• Configurations:
• Wide-FOV: Short Range

• Narrow-FOV: Long Range



Automotive Radar Vs. Automation Levels
< 2014

Level 1 
Driver Assistance

2016

Level 2 
Partial Automation

2018

Level 3 
Conditional Automation

2019 / 2020

Level 4
HighAutomation

> 2028

Level 5
Full Automation

Object detection Object detection
High resolution 

target separation

4x SRR
1x LRR

3D detection 360° object recognition

2x USRR
4x SRR-MRR

2x LRR

2x SRR
2x SRR

1x LRR

4x SRR-MRR

1x LRR

Applications

BSD, LCA

Applications

BSD, RCW, LCA 
ACC, AEB

Applications

BSD, RCW, LCA 
FCW, RCTA 

ACC, AEB

Applications

BSD, LCA, RCTA

AEB pedestrian 
ACC, AEB

Applications

AVP, PA

BSD, LCA, RCTA
AEB pedestrian 

ACC, AEB

BSD - Blind Sport Detection 

LCA - Lane Change Assist 
RCW - Rear Collision Warning

ACC - Adaptive Cruise Control

AEB - Automatic Emergency Breaking 
FCW - Forward Collision Warning

RCTA - Rear Cross Traffic Alert

AVP - Automated Valet Parking
PA - Parking Assist

USRR - Ultra Short Range Radar 

SRR - Short Range Radar
MRR - Medium Range Radar 

LRR - Long Range Radar

Source: Rodhe & Schwarz - Automotive radar technology, market and test requirements, White paper – Oct 2018 (Salvo S. presentation)



Automotive ADAS Systems

GNSS/IMU System



GNSS/IMU Positioning
• Global Navigation Satellite Systems and

Inertial Measurement Units

• Direct measure of vehicle states

• Positioning, velocity, and time (GNSS)

• Varying accuracies: Real-time Kinematic (RTK-

short base line), Precise Point Positioning (PPP), 

Differential Global Positioning System (DGPS), 

Satellite-based augmentation system (SBAS-
Ionospheric delay correction)

• Angular rotation rate (IMU)

• Acceleration (IMU)

• Heading (IMU, GPS)

GNSS/IMU



• Lane detection

• Positioning data for V2X sharing

• Collision avoidance

• Autonomous parking

• Autonomous driving

• eCall accident location

GNSS/IMU Positioning

0

Multi Band 

L1, L2 and L5,

i.e. GPS

<30cm

More Precision Enables More Safety Features

Precise Positioning: Towards Autonomous Driving 

Precise Positioning to enable < 30cm precision
GPS

GLONASS

BeiDou

Galileo

QZSS
SBAS

Carrier Phase 

RTK

PPP

Sensor fusion



Higher integrity requirements across safety-critical applications

• Semi- andAutonomous driving safety-related 

applications requirements increase

• Higher safety levels

• Added redundancy

• More Robustness & integrity

• Security

• Teseo APP (ASIL Precise Positioning) GNSS receiver, 

new sensor based on ISO26262 concept with unique 

Absolute and Safe positioning information 

complementing relative positioning other sensor 

inputs(i.e. LIDAR, RADAR, etc.)

ST‘s GNSS Receiver Family 

forADAS andAD

Precise GNSS is a Critical ADAS Sensor

Courtesy of Hexagon PI

Bad Solution 
Declared Good 
HAZARD!

Bad Solution 
Detected
SAFE FAILURE

Good Solution 
Confirmed 
SAFE 

OPERATION

HPL – Horizontal Protection Level

VPL – Vertical Protection Level



GNSS Accuracy in Automotive Environment (using PPP – Precise Point Positioning)

Precise GNSS is a Critical ADAS Sensor

Single Frequency 

(i.e. L1) multi-

constellation/code-

phase(1msec 

modulation signal)

Multi Frequency (i.e. 

L1, L2) multi-

constellation/carrier-

phase

APP: ASIL Precise Positioning 

SWPE: Software Positioning Engine



GNSS Integrity – Protection Levels

Precise GNSS is a Critical ADAS Sensor



Automotive ADAS Systems

V2X System



Vehicle-to-Everything (V2X)

V2X

V2V

Vehicle-to-

Vehicle

V2I

Vehicle-to-

Infrastructure

V2D

Vehicle-to-

Device/object

V2P

Vehicle-to-

Pedestrian

V2M

Vehicle-to-

Motorcycle
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32

EIRP: Effective Isotropic Radiated Power

ITS: Intelligent Transportation Systems
Source: Federal Communications Commission FCC 03-324

• BSM (V2V)

• MAP Message (V2I)

• SPAT (V2I)

• TX Power +20dBm

5.915 5.925

• Road authorities and 

public agencies 

primarily responsible 

for usage

• Control Channel, Advertises 

and indicates how to access 

services on other “Service 

channels”



DSRC

NLOS

• Wireless Access in Vehicular Environments 

(WAVE)

• Amendment to IEEE 802.11-2012 to support WAVE/DSRC

• no authentication, no access point/no association

• 5.8 – 5.9 GHz OFDM

• Fast Network Acquisition & low 

latency (<50msec)

• Priority for Safety Applications

• Interoperability

• Security and Privacy (ensured through

a root certification system)

• Broadcasts BSMs 10 times per second

• Transmit power are about 100mW (20dBm 

@Antenna Port - Per IEEE802.11-D.2.2 

Transmit power level) with a nominal range of 
300m (360o coverage)

• DSRC units share the same channel



C-V2X Basics
• C-V2X is a V2X radio layer:

• C-V2X is Device-to-Device (D2D) communication 

service added to the LTE Public Safety ProSe 

(Proximity Services) Services

• C-V2X makes use of the D2D interface – PC5

(aka Side Link) for direct Vehicle-to-Everything

communication

• C-V2X takes the place of DSRC radio layer in

relevant regions

• V2V, V2I and V2P

ITS Layers Remain Unchanged!



C-V2X Basics
• C-V2X Transmission Mode 4:

• Mode 4 – Stand alone, distributed

• Uses GNSS for location and time for synchronization

Transmission Mode 4

PC5



C-V2X Basics
• Transmission Mode 4:

• Out of Coverage operation: The transmitting 

vehicle is not connected to the network

• No SIM card or inter-operator collaboration is 

required

• Each vehicle performs its own scheduling and 

allocation

• No dependency on inter-vehicle components 

(eNB, Allocation Server etc…)

• Mandatory for SAE, ETSI

PC5

PC5PC5

Transmission Mode 4

PC5



C-V2X Air Interface

• C-V2X is based on LTE (4G) uplink transmission - SC-
FDMA (Single
Carrier Frequency Division Multiple Access) signal:

• A single carrier multiple access technique which has similar

structure and performance to OFDMA

• Utilizes single carrier modulation and orthogonal frequency

multiplexing using DFT-spreading in the transmitter and frequency
domain equalization in the receiver

• A salient advantage of SC-FDMA over OFDM/OFDMA is low Peak-

to- Average Power Ratio (PAPR). Enables efficient transmitter and

improved link budget



In Summary
Both Technologies will do the JOB!

But:

• Industry is waiting for regulatory certainty, Government 

Mandate is preferred!

• C-V2X has to reach automotive production maturity

• Implementation and deployment will depend on OEM system 

architecture

• The market will demand standalone V2X module for OEMs 

and aftermarket because V2X is a safety critical sensor.

38



Automotive ADAS Systems

Sensor Fusion Example



Multi-sensor Fusion for State Estimation

Source: “State Estimation and Localization for Self-Driving Cars”, Coursera by University of Toronto

This is a rule based fusion example, 
we will see another fusion later



PART II: Reducing Human 
Efforts in Visual Perception 



Autonomous Driving Lab, DAMO Academy

Carrier
Largest Autonomous Driving in logistic

200+ Cities

800+ AutoVehicle

50M+ orders

Heavy Truck
Preliminary Exploration

Built 20+ Auto-Truck

Cainiao, Shentong

Release in 2027

Truck
Research -> Product

100M+km test milage

50+ routes across China

30+ test vehicles

Custo
mer

Local Center

Carrier Truck Heavy Truck

Custo
mer

LocalCenter

CarrierTruck
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Autonomous Driving Vehicle Is Also A Robot

Understand the 3D world Planning orienated
Data creation

Decide what to do Control in realistic space
Interact with the world

Autonomous Driving
Understand and Act in 3D World

Bus Taxi

CarrierHeavy Truck

51



Common Framework of Robotic System

Understand the 3D world Planning
Data creation

Decide what to do Control in realistic space
Interact with the world

52

Robot!



My Research Focus: Perception + Imagination

Understand the 3D world Planning
Data creation

Decide what to do Control in realistic space
Interact with the world

53

Robot
My Research Focus



My Talk Focus: Perception

Understand the 3D world Planning
Data creation

Decide what to do Control in realistic space
Interact with the world

54

Robot
My Talk Focus



What is Visual Perception?

Localization

Object

Semantic

55

RGB Cam. Images

LiDAR Sparse PCDs

Dense PCDsDepth Cam.



Visual Perception in 3D

AI Models

RGB Cam. Images

LiDAR Sparse PCDs

Dense PCDsDepth Cam.

Localization

Object

Semantic

56



Convolutional neural network



Convolutional neural network



Supervised Learning in Visual Perception

Manual Design Architectures Large-scale Annotation

59



What are Key Challenges in Supervised Visual Perception?

1. Large Efforts in Architecture Design 2. Large Efforts in Data Annotation

60



Heavy Human Efforts in Visual Perception

ML Expert 
• designing network
• experiments
• maintaining system
• integration and etc.
Cost: 1 Million per person
Output: 1-2 Model per year

3D Data Annotation 
• Low unit price
• Large-scale data
• > 10 Million annotation
Company Cost
> 40 Million per year

Key Challenge 1: Large Efforts in Architecture Design Key Challenge 2: Large Efforts in Data Annotation

61

Heavy Efforts Hinder 
Large-Scale Deployment!



Reducing Human Efforts in Visual Perception

EvalNAS, ICLR 20

LR, CVPR 21

SuperNet, TPAMI 22

…

Address Challenge 1: Large Efforts in Architecture Design
- Identifying why NAS cannot surpass random search
- Our Landmark Regularization solution to address

62

We will not cover it in this lecture



Reducing Human Efforts in Visual Perception

EvalNAS, ICLR 20

LR, CVPR 21

SuperNet, TPAMI 22

…

BEVFusion, NeurIPS 22

BEVHeight, CVPR 23

Rec.UNet, ICCV 19

SMSOP, ECCV 18

…

Address Key Challenge 2: Large Efforts in Data Annotation
- Auto-Labeling and pseudo labels to save human efforts
- High-performance and robust 3D perception framework
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Reducing Human Efforts in Visual Perception

EvalNAS, ICLR 20

LR, CVPR 21

SuperNet, TPAMI 22

…

BEVFusion, NeurIPS 22

BEVHeight, CVPR 23

SMSOP, ECCV 18

…

AI System

- Role: Chief Architect

- Broader AutoML

- Deployed in Alibaba

Address Key Challenges 1 & 2: 
• Address both challenges together
• A platform to integrate our latest research advances

64

X 20

Before AutoML System V1

X ?X 1



21 3 4 5

Perception in
3D World

Here

65

Key Challenge 1: Large Efforts in Architecture Design
Key Challenge 2: Large Efforts in Data Annotation



Perception in 3D Understanding

- Brain of robotics
- Similar to human

- The only approach to 
understand the world!

- Data centric

- Deep Neural Networks

Perception

Vectorized space
3D digital world

Sensor Data
Camera LiDAR Radar etc.
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3D Understanding Tasks

Perception

Multi-object
Tracking

Object
Detection

Point-cloud
Segmentation

Depth 
Completion

…
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Why 3D Annotation with Multi-sensor Data Is Hard?

68

Red: GroundTruth

Example of 2D Object Box Annotation



Why 3D Annotation With Multi-sensor Data Is Hard?
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Red: GroundTruth
Blue: Common annotator

Example of 3D Object Box Annotation
（Bird eye view of 3D point clouds)



Why 3D Annotation With Multi-sensor Data Is Hard?
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Red: GroundTruth
Blue: Common annotator

Example of 3D Object Box Annotation
（Bird eye view of 3D point clouds)

Aggregating 100+ frames!



AutoLabel System: Large model as Pseudo Labeler
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AutoLabel System: Large Model as Pseudo Labeler
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AutoLabel System: Large Model as Pseudo Labeler
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AutoLabel System: Large Model as Pseudo Labeler
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AutoLabel System: Large Model as Pseudo Labeler

75

Better 
Base Model

Reduce
Human Efforts

=



• Fusion starts from point clouds, what if LiDAR fails?

State of The Art Multi-modality Base Model

76

Existing Frameworks of camera-lidar fusion

[1] Yu et al. Robustness benchmark of camera-lidar fusion in autonomous driving. CVPR’23 Dataset Paper



• Current fusion model 
depends on LiDAR!

• Perform poorly when data is 
noisy

• If no LiDAR, no results!

SoTA Base Model Fails w/o LiDAR Input

Predictions

77

Ground-truth

Visible in Camera

• Base model with 2 modalities should not fail when 1 missing

[1] Yu et al. Robustness benchmark of camera-lidar fusion in autonomous driving. CVPR’23 Dataset Paper



BEVFusion: A Simple yet Robust Base Model Framework

78

Existing Frameworks of camera-lidar fusion

[1] Liang et al. BEVFusion: A simple yet robust framework for camera-lidar fusion in 3D detection. NeurIPS’22, Spotlight, Supervised intern.



• The first robust framework that is agnostic to LiDAR failure

• +30 mAP compared to baselines

• Become a de-facto standard

• Many follow ups (MetaBEV, BEVFusion 4D, etc.)

Our BEVFusion Framework is Robust to LiDAR Failure

Ground-truthPredictions

79

Accurate 
Prediction

[1] Liang et al. BEVFusion: A simple yet robust framework for camera-lidar fusion in 3D detection. NeurIPS’22, Spotlight, Supervised intern.



• BEVFusion + AutoLabel system surpasses human level annotation!
• By a large margin

BEVFusion Deployed in Alibaba

80

Accuracy (mIoU)

Time (per box)

Cost (per box)

High-

Quality

Ground-

truth

91.35

0.005s

0.0001 RMB

83.12

25s

1 RMB

[1] Liang et al. BEVFusion: A simple yet robust framework for camera-lidar fusion in 3D detection. NeurIPS’22, Spotlight, Supervised intern.

(8.23+)

(5000x

faster)

(10000x

cheaper) 



BEVFusion Other Impact

81

Leading in various tracks of leaderboard

Integration by various AV companiesNvidia Integration as a default AI solution



321 4 5

AI System
ADLab AutoML System

Here
Key Challenge 1: Large Efforts in Architecture Design

Key Challenge 2: Large Efforts in Data Annotation
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• Automatic machine learning as a system

• My Role: Chief architect

Reducing human efforts by building an AI System
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• All steps are manually done

• Cost 90 days for 1 model
• Update an existing model

• Does not include first design time

Manual update of an existing deep learning model
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Step 1: Automatic deployment

• Automation for API services

• Across 6 platforms from hard-ware deployed

• Save ~30 days

85

Automate



• Automatic data mixture

• Lifelong learning to train the network

• Save ~5 days

• Without performance drop

Step 2: Use active learning for data mixture process

86

Automate



Step 3: Incorporate NAS into AutoML System

• Incorporate NAS in 3D backbone

• Support quantization

• Save ~20 days

• Performance Improves ~10%

87

Automate



Overview of the system

A D LA B
A utoM L 
System

D ata C ollection

4G  

U pload

D rive 

C opy

D ata Preprocess

Storage Indexing

D ataset

Process Inference

M ining &  A nnotation

Selection Visualization A nnotation A uto-Label

M odel Training

Training

W ith N A S
Q uantization Evaluation

D ataset
Labeling

Trigger

A ctive 

Learning

O rgainzing

C ontinuous Integration &  O TA

TorchScript Project C .I. Sim  Test R eal TestC om pile O TA

A sset 
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Overview of the system

A D LA B
A utoM L 
System

D ata C ollection

4G  

U pload

D rive 

C opy

D ata Preprocess

Storage Indexing

D ataset

Process Inference

M ining &  A nnotation

Selection Visualization A nnotation A uto-Label

M odel Training

Training

W ith N A S
Q uantization Evaluation

D ataset
Labeling

Trigger

A ctive 

Learning

O rgainzing

C ontinuous Integration &  O TA

TorchScript Project C .I. Sim  Test R eal TestC om pile O TA

A sset 
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Performance
• +10% mAP on object detection

• +5% mIoU on point-cloud 

segmentation

• Fix 150+ failures automatically

Efficiency
• Time spent: 90 → 35 (-

60%)

• Manual steps: 192 → 7 

(-97%)



Outcome: Deployment of AutoML System V1

90

Carrier
Largest Autonomous Driving in logistic

200+ Cities

800+ Vehicles

50M+ Orders

X 20

Before AutoML System V1

X 1!X 1
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4321 5

Conclusion 
Future Work
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从自动驾驶到自主智能
工程驱动的创新浅谈

Kaicheng Yu

2025.5.16



Review of the Development of Multimodal Large Language Models



How MLLM interacts with the society: Our lab’s approach



How MLLM interacts with the society: Our lab’s approach



How MLLM interacts with the society: Our lab’s approach



BEVFusion Closed-loop Data Engine to self-correct

How MLLM interacts with the society: Our lab’s approach



Challenge: Lack of Sufficient 3D Data

99

Visual Knowledge

NLP Knowledge

Solution: get more data!



Challenge: Perception Inevitably Fails when Lacking 3D Data 
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Work in Progress: Imagination via 3D Data Generation

101

• LiDAR simulation via implicit rendering

• Synt. Data -> Self-correct -> AD Perform.

• LiDAR + Camera in one NeRF



Work in Progress: Imagination via 3D Data Generation

102

• LiDAR simulation via implicit rendering

• Synt. Data -> Self-correct -> AD Perform.

• LiDAR + Camera in one NeRF



World Model in Autonomous Driving

Layout

Generated scene

MLLM in Real world: A World Model Approach



1
Rich multi-modal 

control information 3
Multi-view space-

time interaction2
Noise Sharing 

modeling

Delphi: AD multi-view video generation model



Long sequence generated results



Effect iveness：

A data engine to self-correct autonomous driving system



How MLLM interacts with the society: Our lab’s approach



LLM: Fail to ‘really’ logical thinking in multi-modal

Task



LLM + Structure Representation: A New Renaissance



Structure Info Enhance the Reasoning



Future: Combine the knowledge for science discovery



Why Autonomous Intelligence？

主流机器学习成就，依赖监督学习，在自动驾驶、具身智能数据是绝对瓶颈

机器目前来说，没有主动思考能力

对于人类20个小时的简单实操即可开车，但VLA算法几千小时的输入都不能泛化

我们期待：
结合认知心智理论、神经科学等科学研究，
实现规则驱动、增强机器学习系统的鲁棒和自主性



Effect iveness：

From Autonomous Driving to AI Agent



AutoLab: 
We are hiring!

Position

• 博后 、 助理研究员

• PhD (26 Fall)

• 研究助理（全职）

• 访问学生

研究方向

• 认知驱动的AI 智能体行为研究
• 世界模型驱动的数据闭环联合优化
• 规则、知识驱动的大模型应用
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